
CHRIS MAISH, NICHOLAS BOURKE,
ZARTHOST BOMAN & MURRAY MCCULLOCH

TRADE SECRETS TO
WRITE BETTER CODE

 TRADE SECRETS TO WRITE BETTER CODE // 2

ABOUT THIS BOOK
Much has been written about Software Quality,
mostly in an academic context.

For the purposes of this document, software quality
refers to a number of separate concepts:

// Fitness for purpose (how well the software works,
 number of defects).

// Robustness, performance, security.

// Ease of comprehension and understanding from a
 developer/analysis perspective.

// Ease of comprehension and understanding from a
 user perspective.

To restate, high-quality software is software that:

// Consistently performs the tasks that it is designed
 to perform

// Has minimal defects

// Is secure

// Operates efficiently

// Is maintainable

One of the key steps to improve the quality of
the software that you deliver is to build on a solid
foundation, improving the quality of the underlying
code.

This book focuses on improving the quality of the
codebase itself, however code quality is just one
piece of the puzzle — it must go hand-in-hand
with management processes that work, alongside
real technical skills. These three disciplines come
together to allow teams to successfully execute on
technical plans quickly and correctly.

ABOUT F1 SOLUTIONS

For over 20 years F1 Solutions has been building
quality software solutions for Federal and State
Government departments, small and large not-
for-profits, and businesses in Canberra and across
Australia.

Clients include the National Health Medical and
Research Council (NHMRC), Cancer Institute of
NSW, Department of Defence, Department of Social
Services, St Vincent de Paul Society, Elections ACT,
ARENA, Sugar Research Australia, Australian Pork
Limited — just to name a few!

ABOUT THE AUTHORS

CHRIS MAISH

Chris Maish is a Solution Architect at F1 Solutions.
He’s worked with us for over 7 years and has
worked on projects, including OmniStar, DAFF ARC
and iTravel. Chris holds a MCTS in Web Application
Development with the Microsoft .NET Framework
4 and has over 10 years’ experience in software
development. If Chris didn’t go into software,
he says he’d probably have studied to become a
composer, an aerospace engineer or a professional
juggler.

NICHOLAS BOURKE

Nicholas Bourke is the Development Team Lead at
F1 Solutions. He’s worked here for over 6 years and
has worked on some of our most exciting projects,
including OmniStar, eLAPPS, and NAATI SAM. Nick
holds a Bachelor of Information Technology from
the Australian National University, and has over 6
years’ experience in software development. If Nick
wasn’t a software developer he says he would have
become an Archaeologist.

ZARTHOST BOMAN

Zarthost Boman is the Director of Operations at
F1 Solutions. He has over 16 years’ experience in
software development and has worked here for over
9 years. During that time he has overseen all of our
major projects. Zar holds a Bachelor of Information
Technology and Graduate Diploma of Business
Administration. His favourite part of software
development is designing and implementing user
interfaces, especially in web applications. He says
there is nothing better than coming up with a slick
design, coding it and having it look great whilst still
being functional and intuitive to use.

MURRAY MCCULLOCH

Murray McCulloch is a Senior Software Developer at
F1 Solutions. He’s worked here for over 3 years and
he has had a big involvement in the development
of our OmniStar solution. He has over 20 years’
experience in software development and has
worked in nine jobs, eight cities, four states and two
countries. He uses that experience to mentor and
manage our more junior staff.

 TRADE SECRETS TO WRITE BETTER CODE // 3

CONTENTS

CHAPTER 1//	 KNOW WHAT YOU WANT TO ACHIEVE	 4
	

CHAPTER 2//	 PICK THE RIGHT TOOLS FOR THE JOB	 12
	

CHAPTER 3//	 DECIDE ON YOUR STYLE AND STICK TO IT	 20
	

CHAPTER 4//	 RELENTLESSLY PUSH FOR SIMPLICITY	 24
	

CHAPTER 5//	 FOCUS ON CODE COMPREHENSIBILITY	 28
	

CHAPTER 6//	 TECHNIQUES FOR IMPROVING CODE COMPREHENSIBILITY	 31
	

CHAPTER 7//	 TEST EARLY, TEST OFTEN	 39
	

CHAPTER 8//	 AUTOMATE CODE QUALITY	 43
	

CHAPTER 9//	 CODE REVIEWS	 49
	

CHAPTER 10//	 REFACTORING	 52
	

CHAPTER 11//	 FINAL THOUGHTS	 59
	

CHAPTER 1//
KNOW WHAT YOU WANT TO ACHIEVE

Software is an incredibly complex beast. And software
development is a discipline where our reach often exceeds
our grasp. This chapter looks at the most basic element of
getting software development right: know what you want
to achieve.

 TRADE SECRETS TO WRITE BETTER CODE // 5

SOFTWARE IS AN INCREDIBLY COMPLEX
BEAST. AND SOFTWARE DEVELOPMENT IS
A DISCIPLINE WHERE OUR REACH OFTEN
EXCEEDS OUR GRASP. THE NATURE OF OUR
INDUSTRY IS SUCH THAT SHORT DEADLINES,
LOW BUDGETS AND LARGE (AND MOVING)
SCOPES ARE COMMONPLACE.

In the absence of infinite timeframes and budgets,
defects are, simply put, a reality. The trick with
developing quality software is to try to avoid the
common and unnecessary problems. This allows
QAs more time to focus on non-obvious problems,
which in turn maximises quality and helps to
minimise the overall cost of building and maintaining
the system. How you go about this is highly
dependent on its purpose, importance and intended
usage.

To find the ideal sweet spot, we find that it’s always
important to manage scope closely. Managing
the other variables is something that comes with
experience, along with a good understanding of the
business and system. You need to know what you
want to achieve but this isn’t always as simple as it
sounds.

When we build software systems, everyone
immediately asks the question: “What would we like
the software to do?” This is an important question,
but it’s certainly not the only question that should
be asked.

Another question often forgotten is: “How would
we like to maintain the software?” A solution which
does what the business wants but is completely
unmaintainable is not considered high quality. That’s
why we favour simpler, clearer (and therefore more
maintainable) code over more performant code.
(Unless, of course, there is a demonstrated need for
performance.)

On the other hand, there are situations where
code does not need to conform to strict quality
requirements; for example code that is intended to
be used only a handful of times and by skilled staff.
While it is certainly better for this code to be high
quality, the trade-off between functionality/cost and
quality may lay closer to being developed quickly.

Code that falls into this category includes:

 // One-off migration scripts,which are usually
 judged based on their success

 // Developer environment utilities,which often
 have a moderate level of churn and serve no
 purpose outside of the development team

 // Prototypes

REQUIREMENT ELICITATION

While there naturally needs to be a lot of room for
variation in requirements (and the resulting system),
it is advantageous to ensure that you have the
most accurate and complete possible picture of the
desired solution. This has two meanings:

 1. You need to know what you’re building in the
 first place.

 2. You don’t want to fundamentally change what
 you’re building part-way through.

If you don’t know what you’re building, a lot
of rework will be necessary. Rework is where
codebases become messy. Knowing what you’re
writing, when you first write it, will minimise rework
and time directly involved. It will also keep the
codebase neat, tidy and well structured.

On a broader level this is also true. A system
designed to process invoices is not a good system
for creating and managing pictures and videos.
Having a good grasp on requirements means later on
you won’t be trying to fit a round peg into a square
hole.

Once you have a good grasp on the functional
requirements, get a good grasp on the non-
functional requirements. These are equally difficult
to incorporate into a system. It’s important to plan
for the needs of the system as it moves into the
near-to-mid future — don’t just focus on the needs
of the business today.

A design for a system which is intended to support
100 users is very different to that intended to
support 10,000. While smaller systems can easily be
vertically scaled there is a point where a different
approach is necessary.

As things scale up, the programming designs change
pretty significantly — synchronous, centralised
and procedural approaches are replaced by
asynchronous, service-oriented and event-driven
approaches — at these scales, messages, job queues
and workers will become your bread and butter.

TIP: Developing fully defect-free
software is an expensive and near-
impossible task, which simply isn’t
possible in most situations. You will
need to make compromises when it
comes to elegance, cost, performance
and quality.

 TRADE SECRETS TO WRITE BETTER CODE // 6

Similarly, the types of issues encountered typically
become more complex (i.e. race conditions,
localisation errors and others take the place of more
basic logic errors).

SOLUTION AND PRODUCT DESIGN

Solution design is a complex and in-depth task that
requires a lot of skill and expertise.

Thousands of books have been written on this topic
alone.

What we instead want to focus on is how to design
a solution in a way that minimises basic errors.

From a code quality perspective, a good solution
design will:

// Use suitable technologies for the problem at hand

// Use standard technologies for the problem at
hand

// Avoid common security pitfalls

// Avoid common code issues

// Be structured in a way that makes sense to
developers

// Try to hide subsystem complexity from external
consumers

// Take into account non-functional requirements
(including future growth)

// Be simple enough to explain in a few minutes

// Be “boring”

// Be extensible

As a general rule, when picking technologies, favour
compilable, transpilable or lintable code.

Pick a stack that, by design, avoids placing data into
global scope.

Try to pick technologies that are easily refactorable
(refer to Chapter 10 for more details on refactoring)
and that allow for remoting with a minimum of fuss.

One of the fundamental mistakes Microsoft made
with the ASP.NET webforms stack was that they
tried to abstract away the internet layer.

This led to simpler code for developers with
experience developing non-web applications, such
as winforms, but “went against the grain” of web
development.

But this abstraction often led to slow and bloated
pages which were wasteful with bandwidth.

We have seen cases where applications were
transferring hundreds of kilobytes of data between
the client and server on each request needlessly.

It’s possible to turn many of these things off, but the
design itself is fundamentally broken by default.

As such, unless you need what the abstraction
provides or you gain some significant advantage
from it, you should avoid the technology completely.

We would consider these types of pitfalls to be
similar to those around certain types of falsey
values in languages like JavaScript, or random library
method naming and argument ordering in PHP.

Both JS and PHP are languages which grew
organically and have problem areas — JavaScript has
a seminal book called, JavaScript: The Good Parts,
which guides readers away from the language and
library pitfalls; PHP has had much written about its
shortfalls, for instance this blog.

That’s not to say that these languages are on their
own poor choices for achieving goals — in the case
of JavaScript, it’s the only way to achieve some goals
—it’s that these languages carry significant risks
for most teams that must be weighed against their
benefits.

An area where many of the .NET components shine
is in being secure by default. It is a more difficult
task for a beginner developer to inadvertently
compromise the security of an ASP.NET website
than with some other technologies (e.g. PHP).

On the next page is an example of the two pieces of
code.

https://en.wiktionary.org/wiki/compilable
https://en.wikipedia.org/wiki/Lint_(software)
http://shop.oreilly.com/product/9780596517748.do
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/

 TRADE SECRETS TO WRITE BETTER CODE // 7

 C#/ SQLCLIENT

 PHP/ MYSQL_QUERY

string commandText = “SELECT firstname, lastname, address, age FROM friends WHERE
firstname = @firstname And lastname = @lastname”;

using (SqlConnection connection = new SqlConnection(connectionString))
{
 SqlCommand command = new SqlCommand(commandText, connection);
 command.Parameters.AddWithValue(“@firstname”, firstname);
 command.Parameters.AddWithValue(“@lastname”, lastname);

 try
 {
 connection.Open();
 using (SqlDataReader reader = command.ExecuteReader())
 {
 if (reader.HasRows)
 {
 while (reader.Read())
 {
 Console.WriteLine(“{0}\t{1}\t{2}\t{3}”,
 reader.GetString(0),
 reader.GetString(1),
 reader.GetString(2),
 reader.GetInt32(3));
 }
 }
 else
 {
 Console.WriteLine(“No rows found.”);
 }
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
}

// This is the best way to perform an SQL query
// For more examples, see mysql_real_escape_string()
$query = sprintf(“SELECT firstname, lastname, address, age FROM friends
 WHERE firstname=’%s’ AND lastname=’%s’”,
 mysql_real_escape_string($firstname),
 mysql_real_escape_string($lastname));

// Perform Query
$result = mysql_query($query);

// Check result
if (!$result) {
 $message = ‘Invalid query: ‘ . mysql_error() . “\n”;
 $message .= ‘Whole query: ‘ . $query;
 die($message);
}

// Attempting to print $result won’t allow access to information in the resource
// One of the mysql result functions must be used
// See also mysql_result(), mysql_fetch_array(), mysql_fetch_row(), etc.
while ($row = mysql_fetch_assoc($result)) {
 echo $row[‘firstname’];
 echo $row[‘lastname’];
 echo $row[‘address’];
 echo $row[‘age’];
}

mysql_free_result($result);

 TRADE SECRETS TO WRITE BETTER CODE // 8

WHY C# IS BETTER SUITED

We believe that the C# code is better suited for this
purpose for many reasons:

 // The use of the general string interpolation
 function in PHP is concerning from a security
 perspective. There will be no complaints if you
 forget to call the mysql_real_escape_string
 method. Of course, you could manually
 interpolate the string in .NET, however this
 is a bigger error than forgetting to call an
 escape method.

 // The static typing in C# makes its usage of the
 result of the query more obvious.

 // The use of global methods in PHP result in the
 correct method to retrieve results not being
 fluently discoverable.

 // The return value from the C# DataReader.Read
 is a boolean, which is far clearer in intent than
 an object.

 // The garbage collection (GC) and scoping via
 using means that you don’t need to worry
 about freeing the DataReader in C#.

 // C# being compiled means that you’ll pick up
 errors in code syntax (and in actually using the
 data that was extracted).

It’s less likely that you’re going to make mistakes —
security or otherwise — and it is easier to write code
that works well.

We are not the only ones who think this way,
software developer, Dan McKinley, makes a good
argument for what boring technology is and why
you should use it in his blog post, Choose Boring
Technology.

Anecdotally, the concept of “innovation tokens” is
one that we have found to be the case. It is difficult
to be successful with projects when you spend a lot
of time putting out fires in the underlying platforms.

PROTOTYPING

Prototypes are one exception to the “minimise
rework” rule.

As developers, we often create simplistic proof of
concepts to show something is indeed possible.

These demonstrations are usually built with the
minimum possible scope, incredibly quickly and
cheaply, and with a minimal acceptable quality.

This is a good thing because they are not intended
to be maintained, and should cost the business as
little as possible (in terms of money and time) to
produce.

The underlying code has usually taken multiple
different approaches and carries some significant
technical debt.

As such, it is almost always an error to turn around
and put this code into a stable codebase which you
intend to maintain simply because shifting quality is
an incredibly difficult task.

Prototypes are useful and important to the
development process. They serve two purposes:

 1. Show that a particular approach to solving a
 problem works

 2. Allow people to see a system in operation.

Both of these help you get a better grasp of what
you need to build.

Note: there is a difference between a prototype
proof of concept and a minimal viable product,
which brings us to our next point.

MINIMAL VIABLE PRODUCT

A Minimal Viable Product (MVP) is different to a
prototype in that it’s not a testbed for new ideas —
it’s a production-quality codebase.

When you are developing a MVP, you should
consider quality as you would in a real system.

It is often desirable to create a prototype, and then
to distil it into a Minimal Viable Product.

When you’re starting on a new project, you should
decide whether you’re building a prototype or a
product, then take the appropriate approach.

TIP: When incorporating a proof of
concept into existing code, start from
scratch. Take the lessons learned from
the proof of concept and architect a
new solution based on what works,
resisting the urge to copy-paste.

http://mcfunley.com/choose-boring-technology
http://mcfunley.com/choose-boring-technology

 TRADE SECRETS TO WRITE BETTER CODE // 9

TECHNICAL DEBT

Technical debt is a pretty common term referring to
the informal ledger of quality within a project.

Any time that a compromise is made on quality,
technical debt is accrued. Each change that is made
either increases or decreases the debt within the
project.

Debt is also a good analogy because, over time,
this debt takes on interest. The sooner you get to
solving design problems and paying off debt, the
easier it is.

One of the key ways to minimise technical debt
involves trying to make changes that improve
the structure, readability and simplicity of the
underlying code; and trying to avoid making changes
that reduce the readability and simplicity of the
underlying code.

Another way to minimise technical debt is to know
what you’re making as early as possible in the
process so that you reduce the number of decisions
and changes that need to be made after the initial
design.

You can also consider adding comments in code to
flag areas that need to be revisited and refactored
and add a task to the backlog to improve these
areas. This way these areas are kept on the radar
and considered for inclusions in upcoming sprints
and iterations.

ADDRESSING THE RIGHT CHALLENGES

Greenfield and Brownfield development are two
different beasts.

Greenfield development involves a process of
eliciting requirements from the business, designing
an overarching system design, prototyping various
pieces of the puzzle and then integrating them into
the system design.

Brownfield development, on the other hand,
largely focuses around refactoring and the ongoing
management of technical debt while fixing existing
problems within the design and codebase.

The significant differences between the two pose
individual challenges when trying to maintain code
quality.

This is an important realisation when stepping into
development as it fundamentally changes many of
the things that we want to achieve in a high-quality
codebase.

Note: when adding new functionality to an
existing system, this functionality will likely suffer
from similar challenges to those that occur when
developing a new system.

The table on the next page lists some general issues
you are likely to stem from the different sources.

As can be seen from the table, with new systems
most defects are introduced by internal factors. On
aging systems, defects typically are introduced by
external factors.

Broadly speaking, internal factors are things that
can generally be mitigated with improved developer
tooling, training and expertise.

External factors are usually much more difficult to
automatically mitigate, so instead your focus should
be on monitoring and identifying problems and
addressing them quickly when they occur.

It’s a proactive/reactive split.

Additionally, the types of issues that are found in
new systems are more obvious and replicable.

Those found in long-standing systems tend to be
rare or non-replicable; things that can be worked
around; or larger design changes.

This is manifested in old systems “showing their
age”, where issues tend to be more complex and
expensive to fix.

This, along with the natural and ongoing accrual of
unpaid technical debt is what leads to most product
rewrites.

TIP: Pay off technical debt as soon as
possible. If you need to get a change
out quickly, get an initial fix out but
perform the actual fix right away,
otherwise you will be doing the same
work twice.

TIP: Because the types of defects
encountered in new developments are
not the same as those encountered
in existing systems, different actions
should be taken to ensure quality in
the two different types of codebase.

 TRADE SECRETS TO WRITE BETTER CODE // 10

PICK YOUR BATTLES FOR
AUTOMATION
When you know what types of issues you’re
likely to introduce and run into while performing
development, you can start to look at automation.

Please see the next page for a table from xkcd that
looks at how long you can work on making a routine
task more efficient before you’re spending more
time than you save.

Be sure to take into account you probably have
multiple people performing these tasks, and that
automated tasks allow you to perform them more
often than you otherwise might.

Something that’s not included in the below chart is
the idea that some tasks can be done incorrectly.

Automating a task, which is occasionally performed
incorrectly, saves more than just the time saved.

It provides a complete template for how the
task needs to be performed, and effectively
communicates this to other people.

When you automate a task, it no longer matters how
much time it takes, so it is easy to scale up.

Say the task involves checking for syntax errors
in some interpreted script, where a manual check
might take 2 minutes per file. Most people are likely
to perform this only for files that have been changed
by them, and even then only when they are getting
ready to update the code in source control.

On the other hand, if the checking process is
automatic, it is much easier to validate the entire
codebase, and it is possible to do so on every run of
the software.

If it only makes sense to check updated files, this can
be achieved automatically too (for instance via file
system watches), which significantly reduces the risk
of human error.

GREENFIELD DEVELOPMENT BROWNFIELD DEVELOPMENT

SPECIFICATION DEFECTS
//	 Ambiguous requirement errors
//	 Missed edge-cases
//	 Unanticipated side-effects

LEGACY DEFECTS
//	 Breaking changes in underlying components
//	 Technology deprecation

ARCHITECTURE AND DESIGN DEFECTS
//	 Unsuitable system design choices
//	 Non-functional requirements not being met
//	 Last-minute requirement changes

SECURITY ISSUES
//	 Fixes for newfound exploits
//	 Replacement of outdated algorithms

SYSTEM DEFECTS
//	 Missed requirements
//	 Logic errors
//	 Timing defects/race conditions
//	 Security issues

SCALING PROBLEMS
//	 Existing design now unsuitable
//	 Performance bottlenecks

UI DEFECTS
//	 Typos
//	 Client incompatibilities

ISSUES INTRODUCED WITH NEW FUNCTIONALITY
//	 Greenfield development issues

BASIC CODE DEFECTS
//	 Issues with code structure
//	 Syntactical issues in interpreted code

REFACTORING ISSUES
//	 Unintended functional changes
//	 Introduced side effects

PROCESS PROBLEMS
//	 Defects introduced by inexperienced staff
//	 Syntactical issues in compiled code

 TRADE SECRETS TO WRITE BETTER CODE // 11

AUTOMATION IS NOT A PANACEA
You cannot simply throw tools and processes at your
problems and expect them to go away.

Software development is still a hugely complex
endeavour. There are tasks that are simply not
suited to automation. Things that are rare, and
therefore should be verified manually, are prime
candidates.

Only when you have advanced testing capabilities
would you consider automating full-system scenario
testing.

Certain companies such as Salesforce have 100,000
automated selenium tests that run on checkins —
taking, in some cases, up to 12 hours.

It’s important before investing in any significant level
of testing to make sure that the thing you’re testing
is sensible, and to design the software (and test) to
not be brittle.

It only really makes sense to automate things that
are stable, and only when you have advanced your
development process and methodologies to a point
where this is possible.

FAVOUR THE CONSOLE

GUI-based tools and processes are a huge hassle to
automate. Wherever possible, try to use utilities and
tools that can be run standalone and coded against.

Being only familiar with how to perform tasks within
your IDE means that you are effectively insulated
from the underlying technologies and how they
work.

The tasks, and the way you perform tasks, goes
‘against the grain’ of the underlying technology.
This is akin to how Microsoft tried to abstract
away the web with ASP.NET webforms, and did so
successfully, but at the expense of simplicity and
efficiency.

SOURCE: XKCD

http://imgs.xkcd.com/comics/is_it_worth_the_time.png

CHAPTER 2//
PICK THE RIGHT TOOLS FOR THE JOB

This chapter looks at the technology stack we use, and
gives you advice about how you should choose yours.

 TRADE SECRETS TO WRITE BETTER CODE // 13

ONCE YOU KNOW WHAT SORT OF ISSUES
YOU’RE LIKELY TO RUN INTO THROUGHOUT
YOUR DEVELOPMENT PROCESS, IT’S
POSSIBLE TO START TO LOOK AT PICKING
OFF SOME OF THE LOW-HANGING FRUIT
AUTOMATICALLY.

Even before you start looking at the defects you
introduce, make sure that your broad development
process is built on a solid foundation.

This process should have a few basic goals:

 // Know the current state of the software.

 // Be able to quickly provide an updated version
 of the software.

 // Assist in planning current and future
 development

 // Provide developers with a high level of
 productivity

 // Mitigate common issues and problems

 // Identify and resolve more in-depth issues as
 quickly as possible.

It’s about knowing not only what you’re making and
how you intend to maintain it.

But also about knowing where you’re at, where you
need to go. And providing the framework to get
there in the quickest and most effective manner.

As with a lot of things, what holds and works well
for one team may not work for another. Find what
works for your team and iteratively improve on that.

As a fundamental rule: the sooner an issue is
identified, the faster, easier and cheaper it is to fix.

To ensure the highest quality software, make sure
that you resolve problems at the earliest possible
stage.

OUR TECHNOLOGY STACK
At F1 Solutions, one of our web-applications uses a
relatively standard ASP MVC stack:

 // C#

 // ASP MVC + WebApi

 // Knockout + Durandal

 // LESS (+ some legacy SASS)

 // An in-house ORM

 // A ton of HTML templates

 // JavaScript driving client-side functionality

 // Microsoft Team Foundation Server for source
 control

 // MSBuild for Continuous Integration

 // Octopus for deployment

We picked these technologies to strike the ideal
balance between our experience, functionality and
development time (hence cost), as well as code and
system quality.

The bulk of our server-side code is C#, which
gives us strong typing, a compiler, a good IDE, and
matches up well with our team’s background and
expertise.

ASP MVC + WebApi are well designed frameworks
which are both extensible as well as predictable.

LESS and SASS allow us to structure our CSS styles
in a way which is DRY (Don’t Repeat Yourself), and
provide some syntax checking on compilation/
transpilation.

We are stuck using HTML templates and JavaScript
due to the nature of the web (but do what we can to
keep these high quality).

TFS gives us solid source control and issue tracking
capabilities and also serves our business users well.
It also gives us a build system.

Octopus rounds out the stack by providing simple
deployments our teams can use.

Of course, Your Mileage May Vary.

 TRADE SECRETS TO WRITE BETTER CODE // 14

YOUR TECHNOLOGY STACK
The technology stack that you use should be driven
by what you’re hoping to achieve, your experience
and also an underlying desire for building quality
software.

Simply put, certain languages, platforms and
technologies are easier to build high-quality systems
with.

Certain languages, platforms and technologies make
it easier to achieve certain tasks.

Certain languages, platforms and technologies align
with your own areas of strength.

These considerations should all go together to help
decide on your technology stack.

There’s a whole other book worth of content that
can be written on choosing a technology stack that
pushes quality, but we find minimising state stored
in components, injecting dependencies (constructor
DI) and keeping methods small and focussed are
useful approaches codewise.

So we pick technology stacks that allow us to do this
with a minimum of fuss.

Wherever possible, try to collect metrics and as
much information on errors as possible.

In an ASP.NET web application environment, this
usually means some combination of ELMAH, emails
and logging. Having this built into your design, from
the beginning, reduces the time between developing
something and knowing that there’s a problem with
it.

This means that you’ll be able to fix problems faster.

YOUR DEVELOPMENT ENVIRONMENT
People have a lot of personal preferences when it
comes to their development environment. What
enables one person to be most productive may be
completely unproductive for others.

Considering developer salaries, as well as the
benefits that come from having highly productive
staff, it naturally makes sense to ensure developers
have access to the best tools that money can buy.

We find Visual Studio is a great tool for the C# side
of things. Although, with the advent of OmniSharp,
it’s no longer the only player in town. But we also
use a wide variety of tools throughout the team,
including:

 // Sublime

 // Chrome workspaces

 // Atom for editors

 // Git + Git-TFS, TFS for source control

 // IE

 // Firefox

 // Chrome for primary browser

 // Node.js

 // wWinless

 // Visual Studio plugins for LESS and SASS
 compilation

 // IIS, IIS express and occasionally express.js for a
 local http server

Overall, we use the things that work for us!

SOURCE CONTROL

Source control is essential to any software project.
Setting up source control should be the first
development task on any project.

If you don’t have the budget to shell out for more
expensive enterprise source control systems, the
free alternatives such as. Git are equally capable.

ISSUE TRACKING

Like source control, issue tracking is a necessity.
Without a good issue tracker, it’s difficult to track
whether they’ve been resolved.

TIP: Avoid forcing one development
environment or toolchain on other
developers. Improve development
by looking at metrics, issues and
outcomes — instead of trying to
micromanage the development
process itself.

TIP: There are no valid reasons not to
use source control on any software
project. If you don’t have it, set it up
right away.

 TRADE SECRETS TO WRITE BETTER CODE // 15

Once they have been resolved, it’s difficult to track
whether they’ve been tested. Once they’ve been
tested, it’s difficult to tell whether they’ve been
released.

The issue tracker acts as the confluence point for
everyone in the team to be on the same page in
terms of what work has been done and what has to
be done.

Managing and resolving all defects found in an
efficient way is an essential part of ensuring the
highest quality codebase possible.

CONTINUOUS INTEGRATION
This is also one of the most important tools in a
development team’s toolbox.

Any time that you have multiple people working on
a project, then continuous integration builds is a
must.

The sooner you know if someone has done
something which inadvertently makes the system
unbuildable, the sooner you can fix it.

Consider making a build containing all compilable
source code to be the minimum success criteria for
continuous integration.

This will find syntax errors and misreferences within
compiled code in the source. Of course, developers
should be checking things before they prepare
source code commits, however all sorts of errors,
primarily human, can break the build.

Once this is done, consider implementing
continuous deployment. This deployment will help
ensure there are no logical errors introduced into
the build and deployment processes, and will also
help uncover errors in data migrations.

REFACTORING

Automated refactoring tools are one of the most
important recent code quality innovations.

Without this tooling, refactoring is slow, complex
and error prone. For C#, Visual Studio ships with a
number of basic refactoring options, which, when
combined with third party tools, improve overall
developer productivity significantly. (We use
ReSharper; other options include CodeRush.)

Microsoft has noted the need for automated
refactoring, moving over to the Roslyn compiler and
significantly bulking up code analysis and refactoring
options in Visual Studio 2015.

TRANSPILATION

Tasks like LESS file compilation are things that need
to be performed whenever a developer changes a
file. There are three approaches you can take for
these sorts of tasks:

 // Use a tool built into your IDE that handles it all
 for you,for example Web Essentials in Visual
 Studio.

 // Use an external standalone tool that watches
 and transpiles your files for you,for example
 WinLess.

 // Manage your transpilation from a console.

We recommend you favour the last option, as
this most readily lends itself to automation and
extension.

In the case of less, using the less compiler through a
node.js console is simply:

 lessc graphs.less > graphs.css

This type of behaviour is far less ‘magic’ and far
more understandable than configuring something in
an external application, even an IDE. Note: in the
new versions of Visual Studio, the IDE provides a
means to execute these types of tasks, which goes
through the console.

TIP: The third thing that you should
do when working on a new project —
after source control and issue tracking
— is to get continuous integration up
and running. It’s the most important
basic indicator of the health of a
codebase. It also provides hook-points
for other automated quality tools.

TIP: If you’re developing C# or
VB.NET but you aren’t using VS 2015,
and don’t have it already, get yourself
a copy of ReSharper. Your codebase’s
quality, as well as other developers,
will be glad you did.

 TRADE SECRETS TO WRITE BETTER CODE // 16

PACKAGE MANAGEMENT

Package management is something that, until
recently, was completely ignored in the .NET
world, but utilised heavily elsewhere. Historically,
Microsoft saw the Global Assembly Cache (GAC) as
the solution to DLL Hell, where developers would
run into problems with users not having the correct
version of dependencies installed, along with some
other versioning issues.

Unfortunately, while the GAC did provide some
relief from these problems, it introduced others.

Shortly after realising this, NuGet entered the scene.
NuGet is a centralised repository of versioned
packages that can be installed into to your .NET
projects.

NuGet improved the situation significantly, but
revealed other problems with the way .NET
projects were historically structured (mainly around
things like installing and updating web application
dependencies).

Many of these limitations and problems are being
addressed with asp.net vnext, the next generation
web application technology from Microsoft.

Instead, what is most forward looking is to use two
package managers from the JavaScript world: npm
and bower.

NPM is a package manager that is useful for
development with JavaScript.

Bower is a package manager that is useful for getting
packages built by others into your web applications.
Both can be executed through node.js.

Both have some level of support built into Visual
Studio 2015.

BUILD TOOLS

When developing code which is not compiled at
runtime, it quickly becomes burdensome to manually
perform the tasks that need to be done when a file
changes (for instance transpiling LESS files to CSS).
For this, the JavaScript World has a number of good
answers. Node.js + any number of build tools, such
as grunt and gulp, are a good solution for this.

Most of our expertise lies with using grunt, where
you create a gruntfile. This is a declaration of a
number of tasks built up of component plugins that
can run on a command (“grunt task-name”).

One very useful task is a watch, such as grunt-
contrib-watch, which allows node to sit and wait for
changes to one or more files.

This can be combined with things like lessc, via
the grunt-contrib-less, to compile less files to CSS
whenever they change.

A NOTE ON WARNINGS

 Warnings, such as those given to you by your
compiler, IDE or tools, are useful and great. Two
quick notes on warnings though:

 1. Warnings may not themselves indicate
 something is necessarily a problem. However
 they might be, and having a large number
 of warnings provides additional noise within a
 codebase.

 If you have no errors and add one,
 it’s very noticeable; however, if you already
 have 500 warnings, you are less likely to notice
 a 501st being added. And that 501st warning
 might be one which is a real concern.

 2. Most large codebases will have a number of
 areas where the code doesn’t comply with z
 standards and causes warnings. New codebases
 most likely won’t. When you first start
 developing functionality, it’s easy to focus on
 getting stuff done and ignore quality.

TIP: There is a lot more to cover on to
effectively use package management
and build tool which we will save
for another time. Package managers
try to, and to an extent do, handle
many issues with legacy components
and external components changing.
They give you the ability to track and
more easily perform updates to your
external components.

TIP: Treat non-stylistic warnings as
errors. If there’s a way that you can
enforce this in your IDE/Build system,
switch it on.

TIP: If you’re transpiling code, make
it an action that occurs when you
build the software. Don’t check it into
source control. This will remove the
possibility that someone updates the
source file but not the output.

http://www.javascriptworld.com/

 TRADE SECRETS TO WRITE BETTER CODE // 17

 However, when you finally do get a chance
 to spend time looking at code quality, it’s a much
 larger and more daunting task. It’s best to start
 and build on a solid foundation by thinking about
 your automated tools upfront and enabling
 linting, code analysis and other quality tools from
 the get-go. The following sections will cover
 some key considerations.

COVER OFF THE BASICS

Once you’ve got source control, issue tracking and
continuous integration builds down, it’s time to start
looking at improving the quality of the code itself.
There are a few across-the-board basics which are
reasonably simple to get coverage on.

SPELLING ERRORS

Code-aware spellchecking is a must if you embed
your user-facing text in code. There are plugins for
essentially every editor/language for this.

Spell Checker, ReSpeller and Softario are a few
examples of plugins that handle C#. Even if you don’t
embed your user-facing text in code, these tools
are still invaluable in ensuring variable and method
names are correctly spelled.

Structuring your code in such a way that user-
facing strings are kept separate is a good and
useful best-practice. Doing this lays the bedrock
for product internationalisation. It also segregates
this information in its own place, making it easy
to rename product concepts. Another benefit is it
allows for non-technical users to check and provide
the text that’s used is spelled correctly.

Some options for this include resx files, if you write
Microsoft, a database localisation table, or some sort
of client-side resource, such as JavaScript/JSON).

CLIENT INCOMPATIBILITIES

If you’re developing for the web, then you’re in luck.
Twice as much if you are primarily targeting desktop
systems.

Tools such as Browserstack and Sauce Labs let you
perform manual smoke testing via the internet.
Ghostlab is a nice local tool for locally testing
multiple browsers (though, we’ve found it not to
work well with our applications).

For testing against older versions of Internet
Explorer, Microsoft has some useful test VMs
available over at modern.IE

If you’re testing windows applications, or testing
your server components, you’ll likely wind up
needing to create and maintain a large number of
VMs to cover off important configurations.

If it’s your first time doing this — pick a good naming
scheme, and be sure to disable automatic updates!

Where possible, try to automate the golden path of
your testing. Tools such as Microsoft Test Manager
have proven their value to us in doing this.

SYNTAX ERRORS AND MISREFERENCES IN
INTERPRETED CODE

When using interpreted code or markup, it is often
possible to write code which appears to work but
has syntactical or reference errors. Some examples
of interpreted code or markup include JavaScript in
the browser, PHP on most servers, HTML, various
templating and scripting languages.

There are two different paths you can generally
take:

 1. Figure out how to write something compilable

 2. Figure out how to validate your code. In the
 context of JavaScript, these options roughly
 boil down to writing your code in something
 else and compiling it (e.g. CoffeeScript or
 TypeScript) or running it through a linter (e.g.
 JSLint, JSHint, ESLint, Flow).

TIP: Invest time in making your
software easy for automated testing
tools to use, and be sure to involve
your testers in this process. Having
confidence in the basic functionality
of your software’s releases frees up
test time to focus on more important
things.

TIP: If your codebase contains
JavaScript, get linting into your builds
ASAP. Pay attention to the warnings.

TIP: Code quality is difficult to add
across-the-board as an afterthought.
Do it from the beginning.

https://dev.windows.com/en-us/microsoft-edge/tools/vms/windows/
https://dev.windows.com/en-us/microsoft-edge/tools/vms/windows/

 TRADE SECRETS TO WRITE BETTER CODE // 18

Either of these approaches should identify and
eliminate basic errors with syntax. Compilation
systems such as those provided with typescript
will significantly reduce misreferences in code. And
linters should reduce misreferences within each
code unit, for example source file. Breaking code
into small modules from the beginning makes linting
much easier.

ESLint is an interesting project in that unlike JSLint/
JSHint, it allows for custom rules to be created and
added easily.

This gives you the ability to add/enforce your own
requirements (for example if you have deprecated
JavaScript methods; want a particular method’s
return value to be used; or want to enforce a
particular style) which is valuable.

STATIC ANALYSIS TOOLS

In the .NET world, there are various static analysis
tools.

Two of the more well-known are Code Analysis,
which is a replacement for an earlier Microsoft tool
called FxCop, and NDepend.

In general, static analysis tools have diverse goals.

But, generally, the concept is that the code or
compiled outputs of the code are loaded into
the tool and analysed against a set of design and
structure rules to generate a list of areas where the
guidelines are not followed.

Like with warnings, these tools often give a lot
of false positives, but they also catch legitimate
problems and add a lot of value when used correctly.

Where the balance of “correct” lies for your team
depends on the nature of the software you’re
making.

Similarly, in other languages, static analysis tools
look for ‘risky’ language choices, such as assignment
within if conditionals.

A list of static analysis tools for other languages is
available at this link.

NDepend has an interesting feature called CQLinq,
which allows you to manually write queries against
the codebase.

We’d definitely recommend checking this feature
out.

It allows for analysis like finding methods with
names that are too long to type, methods that are

unused across a set of projects (even when public),
fields that don’t follow naming rules, usage of
specific types and so on.

In short, it’s very powerful stuff for finding areas of
your codebase where there could be problems.

CODE STYLE TOOLS

Various tools exist to enforce code style. In most
cases these are built into other code quality tools
(ReSharper and JSLint both have style rules).

Some standalone tools also exist, for example
Microsoft’s StyleCop.

Note: the styles that are shipped with these tools
may not all work with you. They might even give you
a lot of grief when you have an existing codebase
that does not match the style.

OTHERS

PowerShell is something we make significant use
of but isn’t necessarily directly tied to our quality
processes, except in automating other activities.

Unit testing and other automated testing is
something that we also do but that deserves its own
section.

Same with metrics collection – if possible have
feature usage and errors reported to you so that
you can make product decisions with information
backing up your assumptions and beliefs.

Having errors reported makes it faster to uncover
defects.

There are a number of other tools which we use for
specific situations but unfortunately we don’t have
the time or space to cover them in this book.

Some good general advice is to look at the problems
that you run into – the places where you have
recurring problems with quality – and start to look
for tools that can help improve on them.

https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

 TRADE SECRETS TO WRITE BETTER CODE // 19

IN SUMMARY
There are a wide variety of very useful tools that can
really help improve code quality. We recommend
a number of them, configured in such a way that
warnings are shown as errors:

 // A good IDE picks up compilation issues quickly,
 show warnings and errors during compilation,
 quickly navigate around source files, get syntax
 highlighting. We use Visual Studio.

 // Source control sees what’s changed, provides
 a canonical representation of the code, handles
 problems with multiple developers working on
 components at the same time. Git is free and
 works well.

 // An effective technology stack — we find C#/
 ASP.NET MVC/ASP.NET WebAPI/JavaScript/
 LESS/HTML along with various frameworks
 works well for most uses — identifies tools and
 technologies that let you write high quality
 code by default, and pick up errors as soon as
 possible (i.e. favour compiled languages).

// A good issue tracker keeps everyone on the
 same page and improves the speed at which
 you can find and remove quality issues from
 your codebase. We use TFS but GitHub is a
 solid workflow, too.

 // Continuous integration gives you an additional
 layer of protection against human error. It also
 helps ensure your system can be built and
 shipped at any time. Additionally, it provides a
 platform to automate other quality tasks on
 some centralised infrastructure.

 // Automated refactoring tools allow you to avoid
 adding defects when you make changes. We
 like ReSharper.

 // Transpilation allows you to write code in a
 less error-prone language. You can automate
 this process. We like lessc via node.

 // Package management reduces the chance of
 external changes breaking your software and
 lets you choose when to update components.
 Examples include NuGet, NPM and Bower.

 // Build tools let anyone make replicable builds
 and centralise the dependencies of the
 application, making the build Canonical.

 // Code aware spelling tools and methodologies
 prevent simple typos and other things that
 make the software look amateurish. =They also
 prevent typos in serverside code, which may
 make members and methods less discoverable.

 // Testing tools make it faster to test your
 software leaving more time to identify and
 resolve complex issues.

 // Linters give you basic assurance your
 interpreted code is at least partially correct.

 // Static analysis tools provide protection from
 unsafe patterns within compiled code, direct
 developers away from ambiguous calls and
 otherwise identify problems.

 // Code style tools help keep code consistent
 across the codebase, making it easier to read.

 // Use various other tools, as required.

CHAPTER 3//
DECIDE ON YOUR STYLE & STICK TO IT

A defined code style is something that is important to
have, to document and to enforce. This chapter looks
at how to decide on your style and stick to it.

 TRADE SECRETS TO WRITE BETTER CODE // 21

A DEFINED CODE STYLE IS SOMETHING
THAT IS IMPORTANT TO HAVE, TO
DOCUMENT, AND TO ENFORCE. WHAT
DEFINING A STYLE DOES IS ENSURES THAT
ALL OF THE CODE THAT’S WRITTEN WITHIN
A PROJECT LOOKS CONSISTENT, AVOIDS
AMBIGUOUS PATTERNS AND HAS THE
ULTIMATE GOAL OF MAKING THE SOURCE
CODE EASIER TO READ (AND HENCE
UNDERSTAND).

A while back at F1 Solutions, we attempted to have
one unified style guide. Any code that we wrote
— be it C#, JavaScript, shell scripts — would try to
follow this.

We found, practically, it was a terrible idea.

Our JavaScript would match up nicely with our
serverside code. However, whenever we called
any external libraries, these used a different
capitalisation scheme, which made the code
inconsistent and difficult to write.

Developers had to remember for external library
methods there was one naming scheme and for
internal library methods there was another.

While this doesn’t seem like an overly major issue
on the surface, it did increase friction and make
development in non-.NET languages slower.

We have since learned from that mistake.

Now, we maintain a separate set of styles for .NET
and JavaScript, and delegate other styles to however
the authoritative sources for information on those
languages.

The styles that we use, like with many development
organisations, are based on publically available
documents describing style.

For C#, we use a derivative of the Microsoft C#
Coding Conventions and have our automated tools
configured with the rules that match what we use.
For JavaScript, our conventions are more loosely
based on Douglas Crockford’s Code Conventions for
the JavaScript Programming Language.

These are the prevalent styles for each language
that we use, and find that external libraries tend
to follow them at the API design level. Our
modifications are largely around whitespace,
comments and edge cases not covered.

AUTOMATING STYLE
Style is something that can be checked
automatically.

For C# tools, such as ReSharper or StyleCop,
perform this type of checking. For JavaScript, there’s
JSHint/JSLint/ESLint. For LESS, there’s RECESS by
Twitter, which is, in our opinion, a little too strict.

These tools can all be hooked into a build process
to make sure developers are following the style
guidelines and to provide feedback to developers
when they don’t.

We’d recommend the automation of style checking.
However, the tools typically cares about things we
don’t, so turning off some of the options is often
useful.

On an existing codebase, it’s quite likely there will be
a large number of warnings, so this is something that
may also determine which rules are enabled where.

Note: style tools are one exception to the “treat
warnings as errors” rule. Some style problems could
be treated as errors, but many are okay, even though
the rules that you use should be practical for you.

What’s important is knowing when new warnings
are introduced.

As such, we leave our tooling in ReSharper on with
warnings so we can see them while writing code,
but we don’t have these displayed as errors.

TIP: Something that a lot of people
don’t realise however is that unless
your style is objectively bad, it doesn’t
really matter what the style is. What’s
more important is that it’s consistent.
As such, when you are working
on a project that has its own style
conventions, you should always use
those for consistency.

TIP: Configure style checking tools
in your development environment.
Switch off the warnings that aren’t
relevant to you. If you’re working on
a new project, try not to introduce
problems. If you’re working on an
old project just fix the areas that you
touch. Don’t treat these warnings as
errors.

https://msdn.microsoft.com/en-us/library/ff926074.aspx
https://msdn.microsoft.com/en-us/library/ff926074.aspx
http://javascript.crockford.com/code.html
http://javascript.crockford.com/code.html

 TRADE SECRETS TO WRITE BETTER CODE // 22

STYLE ISN’T JUST CODE, IT’S
STRUCTURE TOO

Style comes down to expectations.

When developers understand how something
should work, they are annoyed when they find an
exception to the rule or something that they expect
should work but doesn’t.

That’s why it is essential to have consistency in
design throughout the codebase.

To this end, in our dependency injection system, we
never have an interface that can be seen from two
components but can only be created in one of them.

We avoid storing state within objects. We keep
methods simple and have a fair amount of plumbing,
which is occasionally boilerplate code, between
them.

We find that while it takes time and effort to
implement the boilerplate, it saves time in the long
run because components work in the same way and
we can more easily reason about the separation of
concerns within the system.

In fact, this is much of the rationale for using
software design patterns in code — they are a library
of named concepts that developers understand.

It also helps that they solve problems well. When
properly named, these components make it clear
to the reader in just a few seconds how multiple
components interact and work.

That’s the whole point of having consistency
within your codebase. Being able to understand
how something works in seconds rather than
minutes makes fixes faster. It also makes identifying
problems easier and makes fixing them more
straightforward.

To ensure the structure is well kept, we create and
maintain an overarching system design document
which captures technical information about how the
projects are structured, how they interact, the high
level technology choices along with any important
notes that a new developer may want or need to
know.

Some other structural considerations can be
encoded into this document too – targets for
method length, complexity, coupling, storage
of state and other code metrics which have a
correlation to quality can be defined here.

STYLE IS USER EXPERIENCE AS WELL

What is true of developers and code structure is
also true of end users and the software’s interface
and operation.

If you have a pattern that’s used throughout an
interface, the exceptions to these rules are sure to
frustrate users who are surprised when they are not
met in individual places.
Say, for example that your application automatically
saves when the user navigates from every
application screen, except one.

Without a visual cue, users will visit the page and
expect their changes to be automatically saved.
When they aren’t, they’ll be confused and then
annoyed.

It’s likely that you don’t need a formalised document
as big as Yelp’s Style Guide or Github’s Style Guide.

But these can be easily slimmed down for usage
within your own products. It is really not possible to
overestimate the effect that a good UX style guide
can have on the consistency of a product.
Building on top of consistent and succinct styles in a
structured manner ensures:
 1. Fewer graphical changes —fixes as a result
 of someone asking why something works in
 two different ways in the system
 2. Reduces bugs as they would be duplicated
 across all instances of the component and
 therefore they are noticed far sooner than
 they otherwise might have been.
 A nice side effect is that it becomes more easy to
safely refactor the component’s instances.

This is a major benefit considering refactoring HTML
templates is notoriously difficult at the best of times.

TIP: Maintain a document which
covers high level architectural
decisions, along with associated
documents that describe how various
cross-cutting concerns should be
implemented. This can be useful to
senior developers and other staff, but
also to explain how things should be
done to juniors. These documents
should be distinct from system
requirements.

TIP: Define a style guide – a document
that covers your basic interactions,
elements that should be used for
them, brand colours and fonts. Make
sure that new components use these
styles and underlying structures.

http://www.yelp.com/styleguide
http://primercss.io/

 TRADE SECRETS TO WRITE BETTER CODE // 23

IN SUMMARY

A code style or set of code styles allows developers
to more quickly understand what is happening
within a single method.

Many of the code-level style rules can be enforced
by tools. However, unless you want a spotless
codebase, we’d recommend just resolving the
warnings provided by these tools, wherever relevant
and possible, and not treating them as errors.

Style is also broader than just where you put braces
and whether you wrap your single-line ifs. It goes
down to the structure that you want a system to
have.

In addition to the design patterns the system
utilises, including broad as well as Gang of Four,
the architectural style goes down to the level of
how data is transmitted and encoded. It documents
how big methods should be, how their state should
be stored and anything else that is relevant to
developers when they are looking at adding new
functionality to the system.

To the user, style means something else as well: the
way that the application looks and feels.

All three of these are difficult to communicate
directly with other developers and non-engineering
staff.

We recommend putting these rules and structures
down into documents so everyone’s on the same
page and there is a canonical representation of how
you would expect components to work.

The name of the game is keeping things consistent.

We often can’t rely on code itself to speak to
developers, analysts and others, and wherever
things are inconsistent you are likely to find
complexity and bugs.

Note: a side effect of this is not making hacky fixes.

If something is broken, any fix should be applied
across the board and not on a piecemeal basis.

Of course, this doesn’t mean fixing anything that
isn’t broken but it means if you are having trouble
with one instance of a component, you should find
out why this instance is broken and apply a fix that
detects that condition and rectifies it.

This may sound like a simple concept, as it is simply
Don’t Repeat Yourself, but in practice it’s often
overlooked.

Having this set of rules and consistency keeps things
working the same across the board.

CHAPTER 4//
RELENTLESSLY PUSH FOR SIMPLICITY

The two underlying issues that cause code quality
problems are complexity and inconsistency. This chapter
looks at how to simplify code and reduce issues.

 TRADE SECRETS TO WRITE BETTER CODE // 25

THE TWO UNDERLYING ISSUES THAT
CAUSE CODE QUALITY PROBLEMS ARE
COMPLEXITY AND INCONSISTENCY.
INCONSISTENCY CAN COME FROM STYLE,
BUT COMPLEXITY COMES FROM A NATURAL
TENDENCY FOR SOFTWARE TO GROW
AND BECOME BLOATED OVER TIME. THIS IS
SOMEWHAT RELATED TO TECHNICAL DEBT.

Where you have complexity, you are likely to find
defects and other quality problems. Where you have
inconsistency, you are less likely to notice problems.
In both cases you are more likely to have a harder
time trying to fix the underlying problems than with
an issue in simple and consistent software.

Complexity takes many forms in a codebase, from
lines of code, method calls from a function, the
number of external dependencies used by a class,
all the way down to an unidentifiable feeling that
something’s not really that clear from reading a
class.

Complexity also takes many forms in an application.

Sometimes this complexity is necessary for the
successful operation of the system. Other times it is
unnecessary and results in:

 // Duplicate functionality

 // Actions that require multiple clicks instead
 of just one

 // Additional screens that offer little value

 // Graphics that add no additional context

 // Processes that could be far simpler.

Regardless of the cause of the complexity, it is
important to remain vigilant and ask if every
individual feature is used, and therefore necessary.

Similarly it is important to try to combine features.
While it may be easy to add a new feature,
modifying an existing one to make it more powerful
without adding cruft is a different challenge.

DON’T MANAGE BY KPI
You cannot manage your codebase by KPI.

There are useful metrics that can come out of static
analysis tools, such as NDepend. For example, you
can identify potential problem areas; although it is
worth mentioning some features are naturally more
complex than others.

Some components may need to maintain state.

The same can be said of number of defects from a
particular subsystem. Defects do not necessarily
mean an area needs to be simplified, even though
defects may be an indicator of problem areas.

Instead, simplicity is something that needs to be
sought manually. Skilled engineers are really the
best, and only way, to ensure a codebase contains
code which is simple.

USE 3RD PARTY COMPONENTS

A great way to manage complexity within your
codebase is to try to move a large amount of
suitable complexity to a third party.

Of course, you must ensure it’s something for which
a trustworthy third party exists, and their solution is
suitable for your needs.

For every non-differentiating and non-core feature
of your product, you should ask whether some
COTS would be better than what you’ve already got.

Failure to do so diverts valuable development
resources to solving problems that are already
solved. It also dilutes your application and team,
and usually winds up costing more than it otherwise
would.

For instance, if you’re working on a staff time
tracking system, it may be important to generate
PDF reports.

Actually figuring out how to build PDFs from scratch
might be interesting. But unless there’s some direct
value in doing so, you should look at COTS solutions
for PDFs.

When you look at how many hours would be
involved in scoping, designing, developing and
testing your own PDF generation system, almost
any amount for a COTS product starts to make
sense.

TIP: When developers work closely
with analysts, the solutions that are
proposed tend to be the best from
a simplicity viewpoint. An analyst
should understand what the business
wants, however a developer should
ask if each of the “parts” of a feature is
actually useful.

 TRADE SECRETS TO WRITE BETTER CODE // 26

On the other hand, if you’re working on a time
tracking system and want to develop some
functionality that monitors the active window on
the user’s machine, there is likely no COTS product
that fills this need, so it should be developed and
maintained in-house.

There are two extremes to avoid in this regard:

 1. Not Invented Here (NIH)

 2. Proudly Found Elsewhere (PFE)

Not Invented Here is when third party solutions
are rejected outright only because the source code
doesn’t belong to the developer.

This is a problem because there are many utilities
and components that are either free or inexpensive,
compared to in-house development.

Not to mention these would have gone through
much more development and testing than you will
be able to fit into your current budget. NIH basically
ignores these benefits.

Proudly Found Elsewhere, by contrast, is always
favouring external solutions. This usually stems from
organisations not trusting their own staff or wanting
to have someone external to blame for the failure of
a component or project.

NEVER ROLL YOUR OWN CRYPTO

“Anyone, from the most clueless amateur to the
best cryptographer, can create an algorithm that he
himself can’t break.”

- A quote from Schneier’s law, which is named
after Bruce Schneier who is a renowned security
researcher. This quote captures a number of issues
and problems facing computer scientists, from
developer hubris to Not Invented Here syndrome to
the true complexity of creating working security.

Real experience with cryptanalysis is required to
successfully implement cryptographic components.

The challenge isn’t creating something you cannot
break or cannot be easily broken by others; it’s
creating something that holds up to an extended
attack by determined experts.

If you do not have the appropriate security
background, leave it to someone who does.

REMOVE DEPRECATED AND UNUSED
CODE
When code is no longer called from within the
system, remove it from the codebase. If you need
that code again, look for it in source control.

Judiciously removing anything that’s no longer
necessary keeps the codebase lean and focussed.
This makes it easier to find what’s in use at present,
allowing developers to find and fix problems more
easily.

KILL UNUSED FEATURES
This is always a difficult call to make, but features
that are no longer used, even if they are exposed to
users, should be removed wherever possible.

If this is not possible, the feature should be rolled
into whatever replaced or made it obsolete. Unused
features are like deprecated and unused code – they
bloat the codebase and as time goes on make it
harder to make changes.

Of course, actually understanding which features
are used and which are not used is difficult.

Wherever possible, you should be basing your
decisions on hard numeric metrics of user behaviour.
Alternatively, remove the feature from the default
UI and hide it behind an option. Measure user
interest in that feature; if there is little or none,
remove it from the system completely.

TIP: Staying in between these two
extremes is essential to delivering
cost effective software that is of
high quality. You need to critically
evaluate external options, but at the
same time not be afraid to build your
own components if they are core to
your application, don’t exist yet or
are unsuitable for whatever reason.
If an external option is suitable, you
should seriously consider using it, as
the ongoing costs for developing a
component to a high level of quality
are usually much higher than just
purchasing a license.

TIP: Never roll your own crypto. Just
don’t.

 TRADE SECRETS TO WRITE BETTER CODE // 27

BUILD ON A FEATURE, DON’T CREATE
AN ALTERNATIVE
This is a rephrasing of the “Kill unused features”
point above.

If you are going to provide an alternate way of doing
things, try to figure out how to combine the two
— how to modify the existing functionality to do
whatever needs to be added.

Sometimes modifications cause code issues. But the
ideal in the trade-off between bulk of code and risks
of changing behaviour often lies closer to keeping
existing features but extending them.

AVOID UNNECESSARY AND USELESS
ANIMATIONS

Our brains are naturally drawn to animation, so it
should be used sparingly and strategically.

One problem with many computer systems
is animation is used far too often to present
information simply for the “wow factor”.

What this does is distract and confuse the user. It
also complicates the codebase. In our experience,
animations also tend to be a source of defects.

Instead, animations should be used for a purpose.
An example might be to draw the user’s eyes to
something important like contextual information
or important data. Even then, animation should be
simple and subtle.

Taking this approach with web-applications allows
you to use CSS animations in lieu of more complex
JavaScript-based ones.

We find that CSS is more succinct, simpler and,
compared to home-grown JavaScript solutions, has
fewer issues.

CHAPTER 5//
FOCUS ON CODE COMPREHENSIBILITY

Good code doesn’t just work; it communicates its
purpose to the reader. This chapter gives tips and advice
to help you write code that others understand.

 TRADE SECRETS TO WRITE BETTER CODE // 29

“THE RATIO OF TIME SPENT READING
(CODE) VERSUS WRITING IS WELL OVER 10
TO 1… (THEREFORE) MAKING IT EASY TO
READ MAKES IT EASIER TO WRITE.”

- ROBERT C MARTIN, CLEAN CODE:
A HANDBOOK OF AGILE SOFTWARE
CRAFTSMANSHIP

Good code doesn’t just work; it communicates its
purpose to the reader.

Similarly, a developer must understand how the
code works in order to effectively and correctly
make changes.

This is particularly important because the majority
of a developer’s time involves reading code
to understand how it fits together in order to
rationalise what impact changes will have on the
system.

Any attempt to improve code quality and reduce the
frequency of defects should be built on the concept
of keeping code readable.

This chapter broaches the broad concept of code
clarity, or writing understandable code.

In defining what we mean by understandable, we
can boil it down to a simple question: If you were
to give some code to an average developer who is
familiar with the language, can he or she understand
its intent — what it does — and its mechanism —
how it does it — by simply reading it? When the
answer to this question is “no” the code is not clear
and there is room for improvement.

Note: it is often said code should be self-
documenting. While this is sometimes offered as an
excuse for not writing comments, it is nevertheless a
claim with merit. There are few statements you can
make about code that is easily understood.

Code that is easy to understand:

 // Is written in such a way it communicates its
 intent to the average programmer reading it.

 // Does not employ unnecessarily complex or
 obscure techniques.

 // Dependencies are easily observed.

 // Requires few comments, but is clearly
 commented where necessary.

 // Employs consistent naming and formatting
 conventions

Roughly speaking, this understanding, and the broad
concept of code boils down to ensuring that there
is consistency across the system, and that the code
itself is predictable and as simple as possible.

Comprehensible code involves:

 // Structural consistency

 // Stylistic consistency

 // Keeping functional complexity as low as
 possible

 // Keeping components loosely coupled

 // Be explicit with flow

 // Comment where necessary

 // Be explicit and consistent with naming

 // Be explicit with preconditions and
 postconditions

 // Avoiding complex and oft-misunderstood
 language features

 // Ensuring methods are appropriately sized

 // Keeping scope depth low

This book has already touched on the first three
items, which are important but by no means enough
to keep code in a state that it is easily readable.

WHY ALL THIS MATTERS
Bad code is a business liability.

It is a given that the code we write must, when
compiled or interpreted as a program, do what it was
designed to do.

That is its principal reason for existing. And that
is usually foremost on the mind of the developer
writing it.

What is often forgotten, though, is its secondary but
equally important role: to efficiently communicate
its intent to a human reader.

When our code fails in this secondary purpose, it is
no longer good code — no matter how well it works.

Rather than the asset it should be, it has now
become a liability.

 TRADE SECRETS TO WRITE BETTER CODE // 30

BUY NOW, PAY LATER
Writing easy-to-understand code comes at a cost. It
takes longer.

But writing hard-to-understand code also comes at a
cost. Sure, it might be cheaper in the short term but
hard-to-understand code often results in technical
debt, which is a latent cost to its owner.

Technical Debt manifests in several ways:

 // Debugging or enhancing it takes longer, as
 developers must spend time deciphering it
 before they can modify it. This is a repeating
 cost; every developer who reads the code
 must expend some effort understanding it. In
 this way, a few minutes of creation can lead to
 hours of unnecessary time spent. All of this
 time would have been saved if the code was
 written clearly to start with.

 // Unclear code gives rise to more bugs, because
 developers making changes to it are unlikely to
 fully understand it, leading to mistakes. And
 more bugs, of course, mean more expense.

 // It is less likely that subtle bugs in cryptic code
 will be noticed by developers; thus increasing
 the likelihood of bugs reaching production. This
 lowers the quality of the product, which
 ultimately can affect customer confidence.

BAD BEGETS BAD
Worst of all, bad code is a disease that rarely
remains isolated.

Just as financial debt grows through interest over
time, bad code tends to proliferate as time passes
by.

There are various ways in which this happens:

 // When an enhancement leads to code being
 added to a poorly-written module, it invariably
 becomes a bigger poorly-written module. It
 is difficult to build a strong structure on a weak
 foundation without rebuilding the foundation
 first.

 // Developers will often, with the best of
 intentions, copy existing code when developing
 a new module which is very similar to an
 existing one. This is often the only choice given
 a constrained schedule. But it has the effect of
 reinforcing the bad code, which has now
 become a local pattern within the project.

 // Junior developers who are learning by example
 will often copy existing patterns without
 realising that they are bad patterns. The same
 goes for some senior developers who may be
 working in a language new to them.

 // Eventually, when so much of a codebase is of
 a low quality, the problem seems too big to fix
 and developers become apathetic and simply
 stop trying to fix it.

This compounding effect continues as long as the
problem goes uncorrected.

Ultimately, the quality of a product’s codebase can
decide the fate of that product.

A complex system composed of largely unintelligible
code eventually becomes too costly to maintain, and
is abandoned or redeveloped at great cost.

In contrast, a well-written system is likely to go
on being maintained and enhanced for longer,
extending its useful life as an asset to the business.

IN SUMMARY

If any part of your livelihood depends on the
software you write, bad code is costing you.

It’s costing you valuable developer hours in
deciphering it and debugging it. It affects customer
confidence thanks to a higher number of production
issues. And let’s not forget that it affects revenue
due to longer release cycles.

Writing clean, understandable code is not difficult,
but it requires some discipline.

It seems to be a natural law of the universe that
good habits are more difficult to hold onto than bad
ones, and so we find it an up-hill battle to keep bad
code from creeping into our systems.

The chief enemy of quality code may be the
deadline. Those of us beholden to the demands of
customers are rarely afforded the luxury of taking
the long way around. But the mistake is to think
of it as a luxury, when it should be considered a
necessity. The key take-away here is that whatever
may be the present cost of addressing bad coding
practices, the future cost of ignoring them is
guaranteed to be greater.

In the following chapter, we explore some
straightforward approaches to minimising
complexity and incomprehensibility in code.

CHAPTER 6//
TECHNIQUES FOR IMPROVING CODE
COMPREHENSIBILITY

Improving code comprehensibility can be done
iteratively with only minor changes to approach. This
chapter looks at some of those approaches.

 TRADE SECRETS TO WRITE BETTER CODE // 32

FORTUNATELY, IMPROVING CODE
COMPREHENSIBILITY CAN BE DONE
ITERATIVELY WITH ONLY MINOR CHANGES
TO APPROACH. WHEN COMBINED WITH
REFACTORING TOOLS, CODE CAN BE
IMPROVED, ONE METHOD AT A TIME.

LAW OF DEMETER

The Law of Demeter (or Principle of least
knowledge) is a design guideline which states that
each unit should only have knowledge about the
units that are closely related to its functionality. The
underlying rationale is that any piece of the system
should only know about itself and the bits of data
that it relies on – in short, any component should
not need to “reach through” another piece of data or
functionality that it doesn’t need to know about to
perform its task.

For example, imagine an online shopping system
which automatically ships parts from a warehouse
as close to the user as possible. A user orders some
products and enters their address when checking
out. This address is stored against the user record.
The product order lines (which reference the
product) are stored against an order record, which is
associated with the user.

Imagine a function Warehouse
GetClosestWarehouseWithProduct(ProductOrderLine
OrderLine).

In order to determine the warehouse to ship from,
this function would have to figure out warehouses
that the product exists in, and then look at a number
of associations in order to do its job (looking at
the order associated with the product; the user
associated with the order; then looking at the user’s
address).

An example of code for this may read like the
example code shown below.

This is a “violation” of the principle. One of the
problems here is that the method internalises a
number of assumptions about how other bits of the
system work (it knows about order lines, orders and
users in addition to what it needs to know about).

Instead, if the method Warehouse
GetClosestWarehouseWithProduct(Product product,
Address address) it can do its work with many
fewer assumptions and with cleaner code.

In this case, the first two lines are unnecessary.

Removing these lines mean that there are fewer
potential problems which can occur within this code
(for instance, if an Order does not have a User).

 public Warehouse GetClosestWarehouseWithProduct(ProductOrderLine orderLine)
 {
 Address orderShippingAddress = orderLine.Order.User.ShippingAddress;
 Product product = orderLine.Product;

 Warehouse[] warehousesWithStock = GetWarehousesWithStock(product);
 Warehouse closestWarehouse = null;
 decimal distanceKm = decimal.MaxValue;

 foreach (var warehouse in warehousesWithStock)
 {
 var warehouseDistanceKm = warehouse.DistanceFrom(orderShippingAddress);
 if (warehouseDistanceKm < distanceKm)
 {
 closestWarehouse = warehouse;
 }
 }

 return closestWarehouse;
 }

 TRADE SECRETS TO WRITE BETTER CODE // 33

MINIMISING COUPLING

The underlying coupling could be reduced even
further by making it so that the method doesn’t
need to know about products at all (Warehouse
GetClosest(Warehouse[] warehouses, Address
address)). Now, the method becomes simpler and
more algorithmic – it doesn’t need to call an external
method to find out which warehouses have stock,
it merely finds which warehouse in a list is closest
to a given address. At the same time, it becomes
more general – it’s now capable of finding out which
warehouse is closest to any address.

Of course, here the consumer must retrieve the
list of warehouses with stock and pass it into the
method, but that’s a reasonably clear thing to
orchestrate.

BE EXPLICIT WITH FLOW
Code consists of both conditions and scenarios
that are obvious to the reader, as well as
those that are less clear. Consider the above
GetClosestWarehouse method, which may look like
the example shown below.

It is clear what happens when the “golden path” (the
most frequent and expected case) is encountered.

It’s a simple function, yet there are still a number of
implicit flows that developers may not immediately
see when looking at the method:

 // What happens when there are no warehouses
 (in this case, null is returned).

 // What happens when there’s no address (in
 this case, the result is dependent on what the
 DistanceFrom function does).

 // What happens when two warehouses are the
 same distance from the address (in this case,
 the warehouse which appears first in the list
 will be returned).

Each of the above cases is a good candidate
for automated tests against a function like
GetClosestWarehouse.

Each of the above cases is also a good candidate for
additional changes to the code:

The resulting code is longer but tells the reader,
upfront, what happens in each of the originally
expected and anticipated cases. See the example on
the next page.

public Warehouse GetClosestWarehouse(Warehouse[] warehouses, Address address)
 {
 Warehouse closestWarehouse = null;
 decimal distanceKm = decimal.MaxValue;

 foreach (var warehouse in warehouses)
 {
 var warehouseDistanceKm = warehouse.DistanceFrom(address);
 if (warehouseDistanceKm < distanceKm)
 {
 closestWarehouse = warehouse;
 disanceKm = warehouseDistanceKm;
 }
 }

 return closestWarehouse;
 }

 TRADE SECRETS TO WRITE BETTER CODE // 34

COMMENT WHERE NECESSARY

One of the readability additions above was to
add some comments (both XMLDoc and inline).
The addition of these comments has aided the
readability of the method.

It’s important to comment where necessary for
clarity, but not to comment everywhere, as this
reduces the signal to noise ratio significantly.

If the purpose of an operation is clear, there is little
point in commenting it - “look at each provided
warehouse” isn’t a useful comment to put above the
foreach statement.

One particular problem in a lot of applications we
see is that comments quickly become outdated
and are not maintained. Be sure to dedicate time
to updating your comments when you update
functionality.

It’s frustrating and time wasting to read a
description of how a function behaves that is
contrary to the implementation.

TIP: Code quality’s not just about
the code that runs. Readability of
comments is every bit as important
as the code itself. Treat them in
the same way – keep them up to
date, keep them succinct, and keep
them clear. They can and should
point others to the rationale for
implementation decisions, edge cases
that were considered and assumptions
that were made at development.

 /// <summary>
 /// Finds the warehouse in the list that is the closest to an address
 /// </summary>
 /// <param name="warehouses">A list of warehouses to match against</param>
 /// <param name="address">The address to calculate the distance to</param>
 /// <returns>The closest warehouse, or null if no warehouses were provided</returns>
 public Warehouse GetClosestWarehouse(Warehouse[] warehouses, Address address)
 {
 if (address == null)
 {
 throw new ArgumentNullException(nameof(address));
 }

 if (warehouses == null || !warehouses.Any())
 {
 return null;
 }

 Warehouse closestWarehouse = null;
 decimal distanceKm = decimal.MaxValue;

 foreach (var warehouse in warehouses)
 {
 var warehouseDistanceKm = warehouse.DistanceFrom(address);

 // if two warehouses are the same distance, we keep the first
 if (warehouseDistanceKm < distanceKm)
 {
 closestWarehouse = warehouse;
 disanceKm = warehouseDistanceKm;
 }
 }

 return closestWarehouse;
 }

 TRADE SECRETS TO WRITE BETTER CODE // 35

If there are many places in a codebase where
comments are out of date, engineers will stop
trusting and reading the comments altogether,
resulting in more time required to understand each
piece of functionality, and hence slower overall
development speed.

BE EXPLICIT WITH NAMING

The naming of fields, functions and classes is
important, as these convey useful meaning before a
developer starts to look at the related source code.

In the previous example, the DistanceFrom method
is potentially poorly named, depending on what
result we’re actually looking for.

Its signature would be:

public decimal DistanceFrom(Address address)

This is not indicative of units, and is potentially
ambiguous around meaning.

Even if the implementation was DistanceFromKm,
this could be different to what we want.

An as-the-crow-flies distance may be reversible,
but if the method had additional smarts that gave
a road distance, the reversibility of the output
is not guaranteed (one-way streets may result
in significantly different distances depending on
direction).

For this reason, DistanceToKm is a more
descriptive and correct name. Alternatively,
DistanceBetweenKm with a direction parameter
would also be a good choice.

DESIGN BY CONTRACT, PRE-
CONDITIONS AND POST-CONDITIONS

When developing functionality, care should be taken
to consider the inputs, the outputs and any side
effects that the code is expected to produce.

Each of these should be documented and make
sense within the context of the application. This is
its contract.

If a method lives up to its contract, it can be
considered defect-free (in this case, issues are
usually encountered when the naming or purpose
of the functionality is ambiguous, or the consuming
developer was unaware of the contract).

As such, if the contract is met, the implementation
within a method is usually irrelevant for the
purposes of doing anything outside of the method.

That said, a public method should not trust callers to
provide it with valid data.

When data enters such a method, it should be
checked for validity. In this way, the method can
define what will happen in all cases.

Depending on how these results are structured
(for instance if invalid data is provided, the method
throws an exception), it is very clear to callers that
they have done something unexpected.

Checking post-conditions and predictable side
effects is something that is less frequent but serves
as a useful litmus test.

Many languages provide some features that are
useful for this checking, for instance C# has the
Debug.Assert.

AVOIDING COMPLEX AND OFTEN-
MISUNDERSTOOD LANGUAGE
FEATURES

Every language has a number of areas where
things are a little bit unclear, or where the language
designers were unable to anticipate future
development or changes.

One of the original C# designers, Eric Lippert,
recently shared his 10 least favourite language
features, which gives a decent starting point for
some things to avoid in that language.

Some examples include:

 // Empty statements – implicit no-op statements
 which do little except lead to unclear control
 flow and syntax errors. (for example while(true);
 contains an empty statement).

 // Treating enums as integral types;

 // Prefix and postfix increment and decrement
 operators. These should be avoided unless
 necessary or clear in usage (eg i++ in its own
 statement is clear enough);

http://www.informit.com/articles/article.aspx?p=2425867
http://www.informit.com/articles/article.aspx?p=2425867

 TRADE SECRETS TO WRITE BETTER CODE // 36

 // Finaliser/destructor logic – destructors are
 complex beasts that behave differently to what
 most developers would expect. When
 practically writing destructors, the code is often
 quite messy due to the lack of assumptions that
 you can make about the state of the object.

There are also a number of other complex/
misunderstood features that are usually a good idea
to steer away from:

 // Using for statements where for-each will
suffice.

 // Multiple statement expressions in a for
 statement initialiser or iterator.

 // Complex LINQ projections (sometimes).

Modern C# does not frequently need the for
statement. By far the most common case in other
languages is to look at each item in a list, in order.
In this case, so long as the position of the object
within the list is unimportant, a for-each statement
is usually a better, and more clear choice as it
introduces a named variable into the correct scope.

In the rare cases where for statements are
necessary, it is almost never a good idea to place
multiple statements in a for loop. Here is an
example of valid, yet unclear C#:

for (int i = 1, j = 3; i < 4;i += --j == 0 ? 1 : 0, j = j
 == 0 ? 3 : j)
{
 Console.WriteLine(“i:{0}, j:{1}”, i, j);
}

Trying to guess what this code will do without
stepping through the logic is difficult.

Moving the prefix increment operator (--j) out
makes things marginally more clear, but doesn’t help
significantly.

The same statement can however be far more
clearly written, avoiding the rare language features
and much of the complexity as such:

for (int i = 1; i <= 3; i++)
{
 for (int j = 3; j >= 1; j--)
 {
 Console.WriteLine(“i:{0}, j:{1}”, i, j);
 }
}

The main point here is that virtually equivalent
code can be written clearly, or unclearly, depending

on how the developer chooses to go about using
language features.

CHOOSE THE MOST OBVIOUS
APPROACH

Consider the following C# function:

public string SanitizePath(string path)

{

 return Path.GetInvalidPathChars().Aggregate(path,
 (current, invalidChar) => current Replace(invalidChar,
 ‘_’));

}

This function takes a string, obtains a list of
characters that can’t be used in a file path, replaces
each of those characters in the given string with an
underscore, and returns the updated string.

While achieving this in a single line of code may to
some seem elegant or clever, those superlatives
have come at the cost of clarity.

Most developers will gather the what of this
method immediately, but many will not immediately
understand the how of it, leading to a period of
brow-furrowing and language documentation-
delving.

The crime in this case is one of abusing a tool by
using it for a non-intuitive purpose.

Aggregate() is a function that applies an
accumulator function over a sequence. Its normal
use case is a mathematical one; here we are taking
advantage of its flexible nature to mutate a string.

Nothing about this usage of Aggregate() is intuitive,
and because of this, some developers upon
discovering this code are going to pause for longer
than anyone should reasonably be expected to
pause on a one-line function.

The time spent understanding this unnecessarily
strange method does not come free.

TIP: When readability changes are
made, often the resulting code is
longer. More code that is easier to
understand and maintain is a trade-off
that is almost always worth making.
“Modern” C# is typically more
readable than C# partially because it is
more spread out.

 TRADE SECRETS TO WRITE BETTER CODE // 37

Every piece of code written in this potentially
confusing fashion is a piece of technical debt: it
might have been quick and easy to write, but it costs
time and money down the track.

Now consider the following functionally identical
version of this code:

public string SanitizePath(string path)
{
 var result = path;
 var invalidPathChars = Path.GetInvalidPathChars();
 foreach (char invalidChar in invalidPathChars)
 {
 result = result.Replace(invalidChar , ‘_’);
 }
 return result;
}

This version relies on common language constructs
which will be familiar to even the novice C#
developer, and as a result the code essentially
documents itself upon casual inspection.

ENSURE METHODS ARE
APPROPRIATELY SIZED

The ideal method length is something that is
debated by software academics.

Some favour incredibly small methods (smaller than
15 lines) while others believe there’s nothing wrong
with longer methods of 100-200 lines.

Our pragmatic approach is that a method should
be as short as practical, but not at the expense of
functionality or clarity.

Each method should however only deal with one
concept.

If an algorithm is necessarily complex and does not
lend itself to being broken down, then separating
out methods does not make sense.

On the contrary, if a method can be easily separated
out into a number of private methods then this may
make sense.

We however find that most readable methods tend
to be somewhere between 10 and 100 lines.

Non line of business systems may however
have different length tendencies. For instance,
graphics routines often involve long and complex
transformations which need to be performed in
sequence – in this case, longer methods are not
necessarily harmful.

MINIMISE SCOPE DEPTH AND EXIT
EARLY

There are a near-infinite number of ways that any
operation can be expressed.

Some of these are needlessly complex. Some of
these are difficult to read.

One quick and easy measure to see how much
complexity is hidden in a function is to look at the
maximum number of scopes nested within each
other.

Code that has more nesting is inherently more
difficult to reason about.

Fortunately in many cases, it is straightforward to
improve readability through slight modifications to
the code.

We’ve seen a lot of legacy code like:

string BuildStatus(bool flag, bool flag2)
{
 string status = “No status”;
 if (flag)
 {
 status = “Status”;
 if (flag2)
 {
 status = “Status 2”;
 }
 }
 return status;
}

Note that the underlying logic is far simpler than the
code indicates.

If we minimise the scope depth and exit as soon as
we know what we’re returning, the method is much
clearer.

See the example on the following page.

TIP: There’s no one-size-fits-all ideal
method length. Keep your methods
coherent, concise and related to a
single process or concept, but don’t
break things down further unless
there’s some readability benefit.
There is additional overhead in
refactoring methods which have been
split down past what is necessary.

 TRADE SECRETS TO WRITE BETTER CODE // 38

string BuildStatus(bool flag, bool flag2)
{
 if (flag && flag2)
 {
 return “Status 2”;
 }
 if (flag)
 {
 return “Status”;
 }
 return “No status”;
}

Reorganising code to have less nesting almost
always aids in readability and hence quality.

IN SUMMARY

Code comprehensibility is an important part of code
quality.

The faster people can read and understand your
code, the more rapidly they can make effective and
correct changes.

If your code actively works to point engineers at
the edge cases and other design considerations
that were incorporated during its development, this
will help avoid the introduction of logic and design
defects.

Making code readable can be done through a
number of different techniques:

 // Structural consistency comes from experience
 with design patterns, both Gang of Four and in-
 project structural patterns. It is important
 because it allows developers to make a lot of
 educated guesses about how functionality is
 likely to fit together.

 // Stylistic consistency comes from having a
 well-defined and followed style guide, along
 with enforcement either in terms of automated
 tools or code reviews. If a codebase has
 inconsistent style, it naturally takes much
 longer to read and understand the code. Just
 as reading Elizabethan English is
 understandable to most English speakers, this
 understanding is slower because the text is
 unfamiliar)

 // The minimisation of coupling, either by
 application of the Law of Demeter or by
 other means, helps keep things from breaking
 in unexpected circumstances and isolates
 parts of the system from changes in others.
 This means that refactoring doesn’t touch on
 random and unrelated parts of the system. It
 also means when things break as a result of

 changes, they are more likely to be localised to
 one piece of functionality.

 // Writing the code so non-golden-path flows are
 obvious allows others to change the code with
 more confidence. Comments are one such way
 to indicate assumptions, history or intent.
 Treating comments in the same way as code, in
 terms of readability, is a good idea but takes a
 lot of work.

 // Naming objects and classes is one of the more
 significant helpers or hindrances in
 understanding a codebase. Having poor
 names means that developers are more likely to
 make incorrect assumptions about the purpose
 or functionality of a method.

 // When you treat methods and classes as
 contracts it aids consumers greatly. Inputs
 should be validated, defined side effects should
 be performed and outputs should be well
 defined. Language-specific assertions can
 assist in ensuring contracts are met. If a
 piece of an application clearly defines its
 contract, consumers can more easily trust
 that it works without needing to look at its
 implementation.

 // Avoiding complex and often misunderstood
 language features results in codebases that
 are easier to read. Every language has a number
 of these, and in many cases linter tools, and
 code quality tools, will flag these with warnings.

 // Methods should be appropriately sized. This
 however does not relate to a specific number
 of lines of code for all methods, as each has its
 own purpose. Methods should deal with
 a single concept and be as long as necessary
 to perform that task. If there are clearly defined
 sub-tasks, having methods for those may also
 make sense, however in many cases this is not
 possible. We would consider a method
 problematic if it were too big to be
 comprehensible as a whole.

 // Keeping scope depth low usually results in
 more readable and easier to reason-about code.
 When a method needs to be rewritten or
 refactored to reduce complexity, try to reduce
 the nesting. What this often means is that
 when you calculate individual values, you’ll
 want to separate them out into functions which
 can then return as soon as the return value can
 be determined.

CHAPTER 7//
TEST EARLY, TEST OFTEN

In order to ensure yout software works as it should,
you’re going to have to test it at some point. This
chapter covers off what you need to know.

 TRADE SECRETS TO WRITE BETTER CODE // 40

IN ORDER TO ENSURE THAT YOUR
SOFTWARE WORKS AS IT SHOULD, YOU’RE
GOING TO HAVE TO TEST IT AT SOME POINT.
THERE ARE A MULTITUDE OF WAYS YOU
CAN GO ABOUT DOING THIS TESTING;
EACH WITH THEIR OWN ADVANTAGES AND
DRAWBACKS.

We’ll avoid an in-depth discussion of software
development lifecycles, except to say that we’ve
found an iterative/agile-like approach has worked
best for our organisation.

One of the main advantages of an approach like this
is we ensure when we develop functionality or make
changes, these changes go through a number of
different types of testing very quickly.

More traditional software development tends
to defer the majority of (system) testing until a
formalised feature-complete point.

At this point, the system is considered essentially
complete, so the testers perform their tests,
assemble a big list of defects, which the
development team works to fix before handing a
new version of the system back to the test team for
another round.

This continues until there are no defects that will
prevent the software from being shipped.

While this process should eventually result in
software that has no major defects, it is far from an
ideal situation:

 // You don’t really have any idea how much work
 is still required in order to be able to release
 the software. Resolution can take a significant
 amount of time, particularly if the defects are
 complex or systemic.

 // Problems are discovered later on, making
 management-level planning more difficult and
 resulting in a higher chance of crunch-mode as
 deadlines loom.

 // There is a non-zero cost to context-switching.
 It’s much faster to keep making changes to
 something that you’re currently working on
 than coming back to it days, weeks or months
 later to fix things up.

 // There’s less cohesion between project teams.
 Communication tends to be “over the wall”
 where one team hands everything over and
 considers their job done for the time being.
 Open channels of communication mean testers
 can ask questions and business analysts can be
 involved in coming up with solutions.

 // The difficulties of changing direction once the
 system is essentially finalised leads to
 specification defects being treated as code
 defects. Often development and test teams
 are unable to decide whether an alternate
 solution meets customer needs. If it is not
 possible for analysts to weigh in on problems,
 non-ideal solutions to problems are often
 implemented.

 // Having multiple phases which occur in
 sequence means the software takes longer than
 necessary, from inception to completion. In
 almost all cases, organisations would like their
 system to be built as quickly as possible, so this
 loss of efficiency is seen as a bad thing.

The two recurring problems are communication and
predictability.

Testing earlier on in the process, and keeping the
analysis team in the loop, reduces these issues
significantly.

While an in-depth discussion on how to approach
the many different types of testing sits outside
the scope of this book, the approaches to unit and
system testing have a large impact on the resultant
code quality.

UNIT TEST

It always comes as a surprise to us how rare proper
unit testing seems to be.

An effective unit test is one that places an individual
piece of code (an algorithm, method or system) into
a certain state, perform an action on it, and then
ensure that the resulting state is as you expect.

Unit tests should be self-contained and isolate the
component from others where possible. They should
be fast to perform.

Writing repeatable and automatable unit tests is
often seen, at least initially, as an activity that adds
little value to the development process.

For this reason, it is often politically difficult to have
time allocated to develop tests. This is doubly true
for existing code.

 TRADE SECRETS TO WRITE BETTER CODE // 41

When code is written alongside automated unit
tests or written to be easily testable, it tends to
be simpler, more readable and higher quality. The
unfortunate side effect is that this testable code
by its nature tends to look quite different to less-
testable code.

Hands down, the biggest difficulty in introducing
unit tests to existing code is that much code was not
originally written in a way that lends itself to easy
testing.

Codebases that were written 10 years ago are
unlikely to use testing enablers such as dependency
injection.

When adding test coverage, you reach a point where
having all tests passing can give you confidence that
the system will run as you think it should.

The benefit of having automated tests is in having
tests fail when functionality is broken.

This can best be leveraged by running all automated
tests during continuous integration builds or
ensuring that tests pass before anything is handed
to test.

Once the software engineers are satisfied a piece
of functionality has been successfully implemented,
software development should enter a system and
feature testing phase.

SYSTEM AND FEATURE TESTING

Testers can verify the system largely works, while
identifying areas that still need work.

During this time, we try to fix issues and get the
fixes into the hands of the testers as quickly as
possible.

We have found that keeping this process fluid and
maintaining quick turnarounds on bugs results in
both development and test teams rarely being idle.

It also saves us from expending unnecessary effort
in logging and triaging different symptoms of the
same defect.

Having test team involvement earlier in the process
also ensures items that have been specified
ambiguously are validated by another set of eyes
early on.

Identifying these issues early means it is easier to
bring business analysis into the conversation to
resolve the ambiguity.

Even if it is not possible to have test involvement
from the start of development, testing serves an
important place in ensuring the quality of a system
and codebase.

When a defect is raised by test, the underlying
problem should be examined and fixed everywhere
it occurs.

While this has a higher upfront cost, the ongoing
costs will wind up being significantly lower.

A simple example may be a defect related to a file
upload process which erroneously allows empty files
to be uploaded.

Any fix to this defect should look at the other similar
file uploads within the system to see if they also
suffer from the same problem.

If possible, a fix should be implemented at the
component level to fix not only all existing instances,
which should then be tested themselves, but to
also ensure the defect is not present on future file
uploads.

In this case, the test team should add them to their
test cases to ensure they check functionality for
these types of files in the future.

TIP: If you can’t find time for
developing automated unit tests on
existing code, try adding tests when
changing code. Do this by refactoring
code to be testable (i.e. change the
structure and not the behaviour just
yet!), adding tests to validate the
functionality, and then making the
changes.

TIP: If adding unit tests to legacy
code is problematic for you, we’d
recommend Working Effectively with
Legacy Code by Michael C Feathers
– a book which focuses on making
step-by-step changes to existing code
in order to be able to introduce unit
tests.

TIP: Treat system testing as an activity
that will involve the BA, Development
and Test teams. These teams working
closely together will result in defects
being noticed more quickly and being
resolved correctly.

 TRADE SECRETS TO WRITE BETTER CODE // 42

It is through this process of testing early and having
good dialogue between teams the quality of the
solution and codebase becomes more important

TRACKING TESTING

Once the development of a feature is complete, it is
important to track all found defects.

Note: there is a balance to be struck on the amount
of detail that needs to be captured. There should be
enough information to reproduce and troubleshoot
the defect, however not so much information as to
be burdensome to collect or create the bug in the
defect log.

Fixes can, and should, be triaged and prioritised.
This directs development efforts to the most critical
problems first and means the test team is not
blocked.

By doing this, more time is dedicated to actually
testing functionality, which results in a higher
quality product.

Over time, as the collection of defects grows, it is
important to look at the list objectively to identify
problem areas within the codebase itself.

A small component that has a disproportionate
number of defects may indicate it is a prime
candidate for additional tests, refactoring or other
rework.

Having a large number of defects of one type, across
many areas of the system, may indicate issues with
approach, issues with staff training or the need for
some additional code improvements.

CHECKLISTS
We find checklists to be helpful in situations where
there’s no good way to codify processes.

Checklists are a series of manual tests before e.g.
code checkins; or a set of tests that testers should
subject each piece of functionality to; or a list of
smoke-tests to perform before making a deployment
live.

These checklists can ensure consistency and quality
across the software (both in the codebase and
resulting system).

IN SUMMARY

Testing is an important part of the software
development process. The historically popular
waterfall method resulted in testing processes which
did little to ensure good and consistent code quality;
Instead focussing solely on whether the resulting
product was suitable for release.

Bringing testers and analysis together with
developers throughout the development process
means that defects can be identified and resolved
more efficiently.

Developing automated unit tests not only ensures a
bit of functionality works as expected, it also means
if future changes affect the functionality of that part
of the system, it will be clear and apparent earlier on
in the process.

Once unit tests reach a certain saturation point,
the team can have some level of confidence that
the software will mostly work because all tests are
passing.

Writing code in a way that can be tested by
automated processes results in quite different code
to code that is not written to be testable. Code that
is written to be testable tends to be cleaner, simpler
and better separated. This is another automatic win
for the quality of the codebase.

Refactoring existing code so that it is more testable
is an involved process. However, this usually
brings significant readability and comprehension
improvements. Building tests before modifying
existing code is also a good way to ensure that
functionality is not broken unintentionally.

The test process should result in a list of defects
which can be analysed to identify trends. As
such, defects found through test are something
that can be used to feed back into the underlying
code quality. A recurring problem indicates a
different approach should be used. A series of
unrelated problems in one component indicates the
component should be separated out or simplified
if possible. Where no automated solution exists to
ensure a quality item, checklists can fill this gap.

TIP: Try not to rely too heavily on
checklists for day-to-day quality
issues. They can serve well as a
reminder for staff, but can easily be
overlooked unless they are integrated
into the system-building process.

CHAPTER 8//
AUTOMATE CODE QUALITY

Throughout the software development lifecycle code
quality can be automated. This chapter looks at when,
why and how.

 TRADE SECRETS TO WRITE BETTER CODE // 44

THROUGHOUT THE SOFTWARE
DEVELOPMENT LIFECYCLE CODE QUALITY
CAN BE AUTOMATED. PREVIOUS SECTIONS
HAVE TOUCHED ON SOME OF THE WAYS
THAT THIS IS POSSIBLE. IT IS IMPORTANT,
HOWEVER, TO KEEP IN MIND THAT EACH
ACT OF AUTOMATION DOES COME AT A
COST.

There are certain things that are too complex
to automate, and things that are too difficult to
properly automate. Where these occur, other
strategies, such as code reviews and checklists, can
assist.

Quality can be automated in a number of places:

 // As code is being written

 // When code is compiled or transpiled

 // As standalone runnable tests

 // At runtime (via checking preconditions and
 postconditions for methods)

 // When code is committed

 // During continuous integration builds

 // Before code is turned into a release candidate

 // During testing

While some tool types have significant overlap, they
fall into the following broad categories:

 // Linters

 // Code style tools

 // Static analysers

 // Unit test frameworks and runners

 // Assertion frameworks

 // Checkin / commit policies and processes

 // Automated testing frameworks and runners

 // Runtime health monitoring and metrics

 // Inspection platforms

LINTERS

Linters are typically used for interpreted languages.
such as Javascript.

The purpose of linters is to prevent syntax errors
and ambiguous or incorrect code from being written.

The tool will usually validate that variables have
been declared correctly.

They will also pick up language syntax errors.

Many linters are opinionated and so will identify
places where “strange” language constructs, such
as Automatic Semicolon Insertion in JavaScript, are
used.

Some take this further with opinionated style rules.

We have had success with JSHint, though
ESLint does look interesting due to its pluggable
architecture.

We’d recommend you incorporate linting on
JavaScript resources within your software products.

These provide a first line of defence against the
introduction of defects, either via merge problems
or via unintentional changes by developers.

Linters are a good tool to get into any automated
build process, for example as an action on a
continuous integration build.

If dealing with an existing build, we would
recommend excluding library files and relaxing as
many of the rules as possible to get the number of
warnings down to 0.

It may be practical to have two separate sets of
rules for pre-existing files and new files, as even
well-written projects are likely to have numerous
warnings returned by tools like JSHint in its default
configuration.

In addition to having linting happen on builds, we
would recommend developers be familiar with
linting prior to committing work. This way the
feedback-fix loop is much smaller and faster.

CODE STYLE TOOLS
While both linters and code style tools are very
similar and have crossover — both technically fall
into the broader category of static analysis tools—
they do have some differences.

Code style tools tend to work against compiled
languages, and so are not interested in syntactical
errors.

 TRADE SECRETS TO WRITE BETTER CODE // 45

For C#, StyleCop is one such style tool. Although it
is worth noting it is now partially deprecated due to
the Roslyn Compiler/Service.

Jetbrains’ ReSharper also contains style tools.

These tools, when configured, allow you to identify
areas of code that are not in conformance with
various code style guidelines.

While the tools have many rules, they tend to
be somewhat inflexible and cannot necessarily
encompass the complete contents of a style guide
out of the box.

As such, developers should still be aware of the
style guidelines within the organisation.

On greenfield projects, it may be simpler to conform
to the default, or close-to-default, style provided by
these tools.

While StyleCop started with an array of seemingly
inconsistent styles, particularly when compared with
eg code coming from Microsoft Developer Division,
this was due to the history of the situation and is
generally no longer the case.

There are still some rules we find good to turn
off. For instance, we prefer to prefix our member
variables and avoid using “this.” throughout our
code.

We find ReSharper matches our own guidelines well,
and it also matches the majority of C#-based open
source projects we have come across.

STATIC ANALYSERS

Strictly speaking, static analysis is any analysis that is
performed against the program without running it.

In practice, it is easier to exclude style and syntax
tools from this definition as most other static
analysis tools work against the compiled code.

For C#, FxCop is one such example of a static
analyser. NDepend/SonarQube use static analysis

but provide additional functionality as they are full
inspection platforms.

FxCop is like StyleCop except it looks at design and
architecture guidelines instead of code style. It also
looks at the compiled assemblies rather than the
source code itself.

It has been partially deprecated by the Roslyn
compiler platform (Visual Studio has an inbuilt Code
Analysis option that is effectively a new version of
FxCop).

UNIT TEST FRAMEWORKS
There are many unit test frameworks out there, and
any major language has dozens.

In C#, the main ones we’ve used are MSTest, NUnit
and xUnit.net. For many tests the main difference
between the three frameworks is in their syntax,
and all three use a number of attributes to drive
behaviour.

MSTest is arguably the product with the least
functionality, followed by NUnit, with xUnit.
net having (nice) support for things like filtered
exception handling.

We like xUnit.net but do often wind up using
MSTest on projects for various reasons, such as
legacy concerns and the .NET 4.5 requirements for
xUnit 2.

Similarly, there are some choices on how you go
about isolating components, for instance how to
come up with mock objects to test against). But
these are largely a matter of personal preference.

Differences in frameworks aside, the biggest
challenge with unit testing is to actually write the
tests themselves.

It can be difficult to get approval to actually write
tests; surprisingly few developers know how to
write good tests.

Existing code usually needs to be changed to
properly support testing, so it’s often a bit of a rocky
start. Even getting the test frameworks running in
the build process is an important step.

All projects have some low hanging fruit that can be
tested as-is.

When we were first looking at integrating
automated tests several years ago, we started with
some of our report processing logic.

TIP: We’ve found it best to put
our code style tools on developer
machines. While we relax the style
constraints within the linters and fail
on lint errors, we tend to be softer on
warnings coming from style tools as
some of the fixes can harm readability
in some cases. These decisions are
something we’d recommend leaving
up to the involved engineers.

 TRADE SECRETS TO WRITE BETTER CODE // 46

We found that it was complex enough to justify
tests to ensure we had correct results and it
touched on an area that may have otherwise been
problematic for us when we made changes.

In your codebases it may not be reporting, but there
is likely a good candidate for where to start these
tests.

Once you’ve tackled that, there are likely some
other pain points which could benefit from having
compile-time checks.

Soon enough, when combined with introduction
of tests when new features are developed, test
coverage will rise significantly.

ASSERTIONS
Assertions allow you to ensure preconditions, and to
a lesser extent postconditions, are always satisfied.

It is helpful but not necessary for these
preconditions to be simple – not-null or range-
based conditions are straightforward for instance.
Conditions libraries for C# include (Microsoft) Code
Contracts, CuttingEdge.Conditions and Resharper
Contract Annotations.

As of .NET 4, Code Contracts have been baked into
the base framework. While the other two were
historically good choices due to their lower barrier
to entry, this is no longer the case.

Code Contracts allows you to express assumptions
with code.

You can then perform automatic checking on
the callers of these methods to ensure that the
contracts are not violated at compile time.

Conditions can also be checked at runtime (though
with one major caveat). Finally, as a beneficial side
effect, Code Contracts can assist with XMLDoc
generation.

Note: there is a set of significant drawbacks to
Code Contracts (that precludes us from using them
everywhere) – that the code must go through IL
rewriting in order to support runtime checking.

This rewriting is not a trivial process and modifies
the resulting code significantly. Similarly, there are
performance concerns on rewriting.

Despite this, the static analysis provided by Code
Contracts is very promising, and definitely an
area that we will be working to improve our own
capability in the coming months.

COMMIT POLICIES / POST-COMMIT
CHECKS

Commit policies are less a tool on their own and
more a hook point that allow you to validate
something is the case prior to performing a code
checkin/commit (or to notify that something was not
the case immediately after a code checkin/commit).

This is a very convenient place to ensure:

 // The code builds

 // Interpreted languages lint

 // The automated unit tests pass

 // There are no build warnings

 // That things are in a generally deployable state

In addition to this, we typically have daily integration
builds which let us know that the code not only
builds, but successfully deploys.

These environments can be used for non-
development teams to verify behaviour and
check progress, and are neither test nor UAT
environments.

RUNTIME HEALTH MONITORING AND
METRICS

It is important to know what your application is
doing while it’s running.

Tools that check uptime are handy to identify
whether the application has critical problems, such
as memory or power, which cause outages.
But these are on the lower-end of ‘useful’, from a
quality perspective.

Instead, the useful tools are those that measure
application metrics, or those that ‘kick in’ when an
application exception occurs.

ELMAH is an invaluable plugin for ASP.NET
application error handling.

It provides visibility into errors that page visitors run
into. We have successfully built out our own error
handling platform from this.

 TRADE SECRETS TO WRITE BETTER CODE // 47

Where possible, collection of usage metrics also
brings in useful information about whether the
software is fit for purpose.

It also informs where to best allocate resources or
attention for future enhancement.

If lots of people are getting mid-way through a
process and then dropping out on a particular step,
that step may require some rework to improve the
completion rate.

Also useful are periodic status checks for the various
bits and pieces that the system relies on. As well as
logging when these change.

These dependencies may be both internal and
external. For instance, when an external provider
deprecates and eventually turns off their API, you
want to be aware of this.

Similarly, when an internal service is failing
intermittently, it is important to know from a
quality perspective. Both cases can be achieved by
monitoring outside of the application itself, however
these can each fail.

These may happen unexpectedly with little notice
and may be an issue with the specific user account
the application is using to connect to the service.
Being notified something isn’t working right now is
not ideal. But is better than users running into the
problem with you unaware.

INSPECTION PLATFORMS
There’s not much to say about inspection platforms
such as SonarQube.

They allow managers and developers ongoing
visibility into the state of their application from a
code quality perspective.

This is much the same way systems such as Visual
Studio Team Foundation Services give a perspective
of the time quality of the overall project. Other
tools such as Atlassian Confluence and Kanban
boards can help provide yet another perspective.

These tools can be used to gain an understanding
at a high level of the amount of technical debt, and
the amount of work that is likely to be required for a
given release.

As discussed in the Test Early, Test Often chapter,
it is important to try to get testing into the mix as
early to ensure that the figures given by TFS or as
a result in the planning boards are as accurate as
possible.

SonarQube is interesting, because it provides
a server-hosted place to see the status of code
quality outputs at any given point in time, while also
providing the ability to drill down to the project and
file level.

NDepend is interesting in that it allows querying of
compiled assemblies (and source code) via a query
language called CQLinq.

These tools allow users to write queries to find e.g.
unused public methods, methods which are long,
and to perform other queries that help pinpoint
areas that may be problematic.

 IN SUMMARY

There are a wide variety of types of tools that can
fit into the development pipeline to help ensure the
codebase and resulting product is of the highest
quality. These tools range from the comparatively
simple to complex standalone analysis services.

On the whole:

 // Linting is useful wherever you have interpreted
 code to ensure that what gets used will actually
 run in practice. It is good to run this both at the
 developer machine and when code is committed.

 // Style checkers are useful to ensure that code is
 consistent. This increases engineer
 comprehension and matches with internal style
 guidelines. Many of the things style checkers
 check for are subjective, so we typically just
 run these at the developer machine and keep
 things consistent with recurring code reviews.

 // Static analysers (other than linters and style
 tools) look at the code or its output to ensure
 that things are structured well. These are useful
 tools to have on the developer machine, along
 with some relaxed settings on builds. They help
 keep code conforming to basic design
 guidelines.

 // Unit testing frameworks and runners help
 ensure code doesn’t break when things change.
 We recommend running tests as frequently as
 possible. Writing tests is difficult to justify at
 first due to its cost and list of perceived
 benefits. As time goes on, however, and as

TIP: CQLinq is a really powerful
tool to query code. It allows you to
use NDepend to gain insight into a
codebase that would otherwise be
impossible.

 TRADE SECRETS TO WRITE BETTER CODE // 48

 the corpus of tests increases, their value goes
 up exponentially. Writing code with tests in
 mind results in cleaner and clearer code which
 is of a higher quality.

 // Assertion frameworks and tools which check
 contracts hold a lot of promise. Our current
 opinion is that there is still work that needs
 to be done before incorporating a heavyweight
 contract system (Code Contracts) into
 our process. But it’s currently one of the prime
 candidates for quality improvement within our
 own code.

 // Checkin/commit policies and processes serve
 as hooks to run other processes. To us, running
 unit tests, linting and performing basic static
 analysis are essentials.

 // Runtime health monitoring serves as a useful
 last-line-of-defence to let us know if something
 is misconfigured or not working. External
 monitoring can take you far, but there are
 certain things, such as account lockouts, that
 are difficult to anticipate/monitor for. Having
 monitoring built into the application itself
 ensures that you know when things aren’t
 working.

 // Inspection platforms provide useful
 management information that can be used to
 drive management and code focus related
 decisions. There are a number of options out
 there – but each has its own focus and gives
 its own visibility into the metrics of health in a
 codebase.

Remember tools are useful, and automating the use
of tools is generally a timesaver.

With anything, however, there is always a trade-off.

It’s important to ask how tools will help with any
given process. Only spend the time and effort
utilising tools that will help with the actual problems
you need them to solve.

CHAPTER 9//
CODE REVIEWS

Code reviews are an essential part of maintaining high code
quality across an organisation. This chapter looks at code
review software, benefits of code review and handling
resistance.

 TRADE SECRETS TO WRITE BETTER CODE // 50

CODE REVIEWS ARE AN ESSENTIAL PART
OF MAINTAINING HIGH CODE QUALITY
ACROSS AN ORGANISATION. THEY SERVE A
NUMBER OF PURPOSES – TO VERIFY THAT
OTHERS ARE ACTUALLY WRITING CODE
THAT IS READABLE AND MAINTAINABLE;
TO SHARE IDEAS AND THOUGHTS ON
MAINTAINABILITY; AND TO ENSURE THE
QUALITY OF CRITICAL SECTIONS OF CODE.

Even with the use of automated tools, there are still
big benefits to having another pair of eyes look over
the code that is being written.

Sometimes developers have “tunnel vision” when
it comes to problems, and solve the problem at
hand but could have done something in a more
generalised or straightforward way.

Sometimes there are things which read clearly to
them but are incomprehensible to another engineer.

Sometimes there are places where an inexperienced
developer is unsure about the best approach to
solving a problem.

Sometimes there are bugs in newly written features
that we’d like to catch before showing the system to
the test team.

These are the cases where a code review is
invaluable.

CODE REVIEW SOFTWARE
There are a number of code review tools out there,
including a code review task type and workflow built
into Visual Studio Team Foundation Server.

While this process works well for some, the main
goal of the review is to get people to look at code
and give feedback. As long as the feedback is given
and incorporated, we consider the review successful.

Over the years we’ve utilised a number of methods
of reviewing code, including paper printouts with
annotations, direct inline code annotation, assembly
of a separate issues list, and the TFS workflow type.

Each developer tends to wind up having their own
preference.

We have found this is something that doesn’t have a
big impact on the results of the review.

This is why we don’t have any hard rules about how
reviews are done.

We just ask there is feedback and that it is
incorporated.

By mixing the reviews and performing them
frequently, we have arrived at a place where
everyone’s review expectations are very similar.

BENEFITS
There are many benefits that stem from these
regular code reviews.

The primary one is reviewed code is, by its nature, of
higher quality than unreviewed code.

We find a lower incident of defects within code that
has been reviewed. And after review, we find the
code itself is more maintainable.

Often the changes that are proposed from a review
are quite minor – clarifications, naming issues, or
slight structural changes.

These are just some of the direct benefits of the
review.

Sometimes the feedback consists of
recommendations for action in the future – “X could
have been done with Y”.

Sometimes the review itself is for a new feature.

This is to give the reviewer some familiarity with it.
This slowly improves the code of the reviewer and
reviewee over time.

The flow on benefits from a review process are
more profound. When reviews catch defects it
means shorter dev and test cycles.

TIP: Build code reviews into your
development process. Within F1
Solutions, we have weekly reviews
involving every developer, and have
found these to be an invaluable tool.
The feedback that each developer
receives must not be treated as
criticism of their code, but taken as
guidance on how to go about doing
things from that point onward. Be
sure also to provide a follow-up so
that identified issues get resolved
in the same way as other defects or
quality issues.

 TRADE SECRETS TO WRITE BETTER CODE // 51

This means there is more room for other quality
improvement processes, such as investing time into
improving the build process or unit testing.

Having reviewers become familiar with parts of
the system they did not write means they gain
additional knowledge and will be familiar with the
concepts and structure at a high level when they
next need to work on that section.

Not only is a review a quality exercise, but it’s also
educational.

HANDLING RESISTANCE
Initially there was some resistance to widespread
code reviews within our organisation.

Two main concerns were cited – interruption to
work and bruised egos.

While it is true that reviewing code takes time, we
believe the benefits brought by the review greatly
outweigh their cost.

Occasionally we do have scheduling issues and there
are problems getting all of the reviews done within
our week time-frame, however with good project
oversight this is a rare thing.

Similarly, we have found once the process got into
full swing, egos were rarely an issue.

So long as the feedback being given is reasonable,
people tend not to take things personally.

Of course, these two properties are dependent on
the dynamics within any team.

ADVICE FOR REVIEWS

There are a variety of ways to conduct reviews, from
formal meetings to more lightweight “pass code
around” type review processes.

Formal meetings tend to have a bigger impact
on schedules. They are also more difficult to
organisation.

While it is more difficult to elicit a reasonable list
of feedback from more lightweight reviews, it
is possible to perform lightweight reviews more
frequently.

This will usually result in more knowledge
transfer; more bugs being resolved earlier and less
interruption to work.

Giving the author the ability to select code is
generally a good thing. It means they can pick an
educational piece of code — they can find something
they’re not sure about. Or they can find something
that is a suitable size — 100 to 300 lines of code is
generally considered a good amount to look through
in a review.

Note: some code is naturally faster to read, and may
be more mundane, so applying rules is likely not
necessary.

Checklists are invaluable in helping reviewers
identify problem areas. They also encourage them to
think analytically when developing code themselves.

Having checklists also ensures after a few rounds of
reviews, everyone’s writing code that satisfies the
items on the list.

IN SUMMARY

Code reviews are a valuable tool in more than
one way. They provide a number of benefits
immediately. They provide perspective, identify
defects and find problem areas early on. Their
benefit is also ongoing. This results in higher quality
code over time, education of other developers and
keeping levels of communication high.

There are definitely a number of ways reviews can
be performed. However, it’s often best to do things
in as light and quick a way as possible to see if it’s
something that will work within a given organisation
or team.

There may be some resistance to regular code
reviews at first. However, over time, if it is quick
and relatively painless, all parties should eventually
realise it’s a beneficial process. If code reviews did
not work for us, we would likely look into other
techniques that achieve similar outcomes, such as
partial pair programming.

TIP: Perhaps the best method to
handle resistance to code reviews is
to trial a couple. If the outcomes from
the review are not generally useful,
and the participants believe their time
has been wasted, a different approach
to these problems may be necessary.
In our experience, we found once the
reviews became frequent they have
been effective and trouble-free.

CHAPTER 10//
CODE REFACTORING

Code written by one developer will need to be maintained,
often by someone else. This chapter looks at refactoring
code to ensure it is readable and maintainable.

 TRADE SECRETS TO WRITE BETTER CODE // 53

AN INESCAPABLE FACT OF SOFTWARE
DEVELOPMENT IS CODE WRITTEN BY ONE
DEVELOPER WILL NEED TO BE MAINTAINED,
OFTEN BY SOMEONE ELSE. AS SUCH,
ALL CODE SHOULD BE WRITTEN IN A
WAY THAT IS GENERALLY READABLE AND
MAINTAINABLE.

As was touched on in previous sections, most code
will be read more than ten times as often as it is
modified.

Due to business realities, it is, however, not always
feasible to write ideal code all of the time.

These external pressures may come in the form
of a missed or late-breaking requirement, or as a
result of developers losing time to troubleshooting
unexpected production issues.

Perhaps an engineer has been sick for a week,
putting the team behind schedule.

Whatever the reason: there is pressure to get code
written in far less time than originally anticipated.

To meet deadlines in these situations, it is tempting
to cut some corners in order to get the required
code shipped.

Some design guidelines or style rules may be
skipped, or maybe methods aren’t structured
correctly.

With experience it is possible to identify the more
“risky” shortcuts to avoid. But regardless it is
essential developers find time later to come back
and finish things.

This will save time and effort further down the track
when the code next needs to be understood so it
can be updated or extended.

Regardless of the cause, it is a simple reality that
developers will be confronted with low-quality (or
lower-quality) code from time to time; Either their
own code or someone else’s.

These are times when refactoring becomes
essential.

First we will look at what is refactoring. Then we
consider when and what you should refactor.

Lastly we look at some of tools to assist with
refactoring.

WHAT IS REFACTORING
Refactoring is a code improvement process.

The goal is to change the structure of code in order
to improve the maintainability of the code, rather
than improving the performance or functionality.

This is achieved by decoupling modules, splitting
big ugly methods into easy to read smaller ones and
introducing new data structures or design patterns
in order to simplify extension. In short, it is the
process of restructuring to pay off technical debt
incurred earlier in development.

 The key feature of refactoring that differentiates
it from other code improvement tasks is that
functionality change is not the goal.

When you sit down to optimise code, you’re looking
to make the system more performant.

When you sit down to fix defects, you’re looking to
make the system function more correctly.

When you sit down to refactor, you’re looking to
make the system easier to extend and maintain in
the future.

Like with many code quality related tasks, one of the
major challenges with refactoring is it can be hard to
quantify the end result.

Optimisation can be measured in improved
performance; bug fixing can be measured by
reduced bug count.

The results of refactoring are less tangible. It’s an
ongoing improvement in productivity in the future.

While tools can generate metrics that try to
put metrics against code quality, such as code
complexity figures or dependency graphs, it can be
difficult to directly measure its impact.

TIP: Don’t expect immediate results
from refactoring. Unless you’re
refactoring immediately before
performing functional changes, you’re
unlikely to see the efficiency benefits
today or tomorrow. This is what makes
dedicating time to refactoring difficult
to justify.

 TRADE SECRETS TO WRITE BETTER CODE // 54

WHEN TO REFACTOR
Even though refactoring is one of those tasks where
the benefits can be hard to quantify, it is obvious to
many developers refactoring is important.

Unfortunately, it can be difficult to convince
managers or clients to spend precious project time
and money on tasks that don’t achieve a direct goal.

As with writing unit tests, performing refactoring
as system changes are performed is an effective
technique for improving a codebase.

For this, when an engineer starts work on a new
feature, they identify areas of the code related to
the new work which could benefit from additional
clarity and simplification.

They then make structural improvements to the
system and surrounding functionality by refactoring.
Substantial improvements to a pre-existing system
can be made without much budget impact in this
case.

Further, the investment of time will pay itself off
well into the future.

Refactoring can be risky.

One of the stated goals of refactoring is to not
change existing functionality, and it is important that
this holds true.

Automated unit testing is an effective technique to
ensure that the underlying behaviour of the system
remains unchanged.

Fundamentally, Test Driven Development is the
marriage of these two ideas.

Tests should be written for each piece of
functionality, as it is written or before it is changed.
Once this is done, the code can be freely refactored
and tidied, as long as all tests continue to pass.
If that’s the case, there is some confidence the
functionality remains intact.

If, however, unit tests are not a possibility for a given
project, there is additional risk in refactoring.

As such, in these cases it is always better to try to
push refactoring toward the front of a development
cycle.

This gives more time for the development and test
teams to identify and resolve the problem. Starting a
new feature by refactoring existing related code is a
good way to go about things.

Conversely, heavy refactoring late in a development
cycle is a risky proposition that should be avoided.

It increases the likelihood of issues being introduced.
Also, the reduced test time means there is more
risk of problems being missed and slipping into
production.

WHAT SHOULD YOU REFACTOR

In order to increase the return on time spent
refactoring, it is important to identify which areas
of your code base will benefit most from being
refactored. There are a number of factors that come
into play.

 // Age of the code.

 // How often does the code change?

 // Are there lots of bugs in the code?

Look at finding areas of your code where you
regularly need to make changes.

A little refactoring to some regularly changed code
can make for a marked increase in efficiency of
development later.

Say you spend 4 hours improving a piece of regularly
edited code, and as a result of refactoring you now
only need spend 5 minutes making a change there
instead of 30.

That time saving will quickly add up if you’re making
a lot of changes there.

Alternatively, is there a part of your code base
people dread having to make changes to? Some old
bit of data access, or clunky audit code that needs
to be changed in 15 places any time a new column is
added to the database?

These are areas that are prime for refactoring.
Anything that requires making lots of complicated
changes in order to do something small is prone to
someone missing one of the steps.

TIP: Try to do major refactoring as
early as possible during development,
as refactoring is often a risky process.
Avoid refactoring if possible toward
the end as this can bear a high risk of
introducing defects in to production.

 TRADE SECRETS TO WRITE BETTER CODE // 55

If you can reduce those steps, you will make the
odds of introducing bugs here much smaller.

Areas of the system that have been solid for a long
time and are unlikely to be changed should be at the
bottom of your list of things to refactor.

It can be tempting to go back and clean up some
ancient code.

But if it’s been sitting there doing its thing for the
last 5 years without causing any problems, then
you’re likely to cause more bad than good by trying
to improve things.

In this situation, the risk of introducing new bugs
will often exceed the benefits to be gained from the
improved code.

Code analysis tools can help with identifying parts
of the system to refactor.

Using something like NDepend or Visual Studio
to generate metrics on the maintainability of
your code. Visual Studio’s Code Metric Analysis
will provide you with a per-project set of metrics,
including cyclomatic complexity, class coupling,
and lines of code, along with a general calculated
“Maintainability Index.”

These sorts of metrics can be useful for identifying
areas within your solution that might be in desperate
need of some refactoring love.

TOOL ASSISTED REFACTORING

Most IDEs have some built in functionality to assist
with refactoring your code.

A simple example is renaming a method to
something more meaningful. In addition to renaming
the method, you will need to change every call to
the method to use the new name.

Any decent text editor should have a basic Find
and Replace function, which would help with this
renaming task, but Find and Replace isn’t very smart.
If you told it to replace every instance of GetFoo
with GetBar, it would fix all of your method calls,
but it would also break every call to GetFood, or
GetFooById, etc.

You could work around this by tweaking your
Find query to something like “GetFoo(“ instead of
“GetFoo”, but there will potentially be issues here
too.

Plus, it means needing to figure out the best
approach every time. This is where dedicated
refactoring tools come into play.

Many IDEs support refactoring operations, such
as Rename, as well as many others. Visual Studio
comes with a set of common refactoring operations,
which can be extended/improved through the use of
plugins such as JetBrains ReSharper.

Refactoring tools will parse your code, adhering to
the syntax of the particular language.

This means by instructing the tool to rename the
“GetFoo” method on the “FooHelper” class, only
legitimate calls to the method being changed will be
updated, without effecting any “GetFoo” methods
on other classes.

Some tools will even provide the option to update
instances of the changed name in comments and
string literals that are detected as being potentially
related. This is useful for keeping XmlDoc comments
up to date.

Other useful functions provided by many refactoring
tools are

 // Extract Method – This allows you to select a
 block of code and have the tool pull it all out
 into a new method. The tool will generally
 detect which variables need to be provided as
 parameters, and an appropriate return type.
 There are limitations to what can be automated
 here though, and the tool will usually allow
 you to modify the assumptions it has made
 prior to actually making the change.

 // Change method signature – This will allow you
 to alter the signature of a method (change
 return type, add/remove/reorder parameters,
 change parameter types), and then assist you in
 updating locations where the method is called.

 // Extract field/property – This will let you
 select a constant value used on a line of code,
 and move it into a variable of some kind. Useful
 if you’ve got some magic numbers lying around
 that should be constants, or if you want to
 make a string configurable.

Keep in mind that while refactoring tools can save
you a lot of time and hassle, they are not perfect.
Good tools will usually try to prompt you if they
detect problems with the refactor attempt, but even
so it is worth manually having a look over what has
changed. They may sometimes do things you don’t
expect.

 TRADE SECRETS TO WRITE BETTER CODE // 56

REFACTORING AND PERFORMANCE

Optimisation may be a side effect of refactoring, and
vice versa. However, optimisation is not a goal of
pure refactoring.

Refactoring aims to improve maintainability of code,
whereas optimisation aims to improve performance.
As you may have already thought, these goals can
conflict.

There may be times where refactored code will
be *less* efficient from a memory or computation
standpoint than the original code.

This is not always a bad thing, depending on the
exact situation. If the hit to performance is low, but
the benefits of having the code more maintainable
are high, then this is often a worthy trade off to
make.

This is not carte blanche to ignore performance
when it comes to refactoring though. If the code
gets a lot slower, then it probably isn’t worth making
the change.

Always be mindful of any potential performance
issues that may be introduced by refactoring.

When breaking code up into smaller methods with
single purposes, it may be harder to notice nested
loops, which can easily cause computation time
issues with large data sets.

When you have a doubly nested loop and add
another loop inside, it’s quite obvious that you now
have 3 loops nested.

On the other hand, if you have a method being
called inside a loop, and then later add a loop to that
method, you might not realise straight away that
you’ve gone from O(n) to O(n^2), or even worse,
from O(n^2) to O(n^3).

EXAMPLE OF REFACTORING

To illustrate what refactoring could look like, below
is a contrived example of some code to process a
payment.

BEFORE

public void ProcessPayment(PaymentInfo paymentInfo)
{
 switch (paymentInfo.PaymentType)
 {
 case PaymentType.Cash:
 var cashPayment = new CashPayment();
 cashPayment.Amount = paymentInfo.Amount;
 DatabaseContext.Save(cashPayment);
 break;
 case PaymentType.Credit:
 var creditPayment = new CreditPayment();
 creditPayment.Amount = paymentInfo.Amount;
 using (var processor = CreditTransactionService.DefaultService)
 {
 var result = processor.ProcessOnlinePayment(paymentInfo.CardName,
 paymentInfo.CardNumber,
 paymentInfo.Amount);
 creditPayment.TransactionNumber = result.TransactionNumber;
 }
 DatabaseContext.Save(creditPayment);
 break;
 }
}

 TRADE SECRETS TO WRITE BETTER CODE // 57

This example contains two separate logic paths in
the one method. If we had to extend the logic for
processing either of these types of payment, this
method would start getting even longer and messier.

The below code is functionally the same as the
above, but separates the logic into extra methods.
This is an example of how refactoring code can
make your code easier to extend later on.

LOGIC SEPERATED INTO EXTRA METHODS

public void ProcessPayment(PaymentInfo paymentInfo)
{
 switch (paymentInfo.PaymentType)
 {
 case PaymentType.Cash:
 ProcessCashPayment(paymentInfo);
 break;
 case PaymentType.Credit:
 ProcessCreditPayment(paymentInfo);
 break;
 }
}

private void ProcessCashPayment(PaymentInfo paymentInfo)
{
 var cashPayment = new CashPayment();
 cashPayment.Amount = paymentInfo.Amount;
 DatabaseContext.Save(cashPayment);
}

private void ProcessCreditPayment(PaymentInfo paymentInfo)
{
 var creditPayment = new CreditPayment();
 creditPayment.Amount = paymentInfo.Amount;
 creditPayment.TransactionNumber = PerformOnlineCreditProcessing(paymentInfo);
 DatabaseContext.Save(creditPayment);
}

private int PerformOnlineCreditProcessing(PaymentInfo paymentInfo)
{
 using (var processor = CreditTransactionService.DefaultService)
 {
 var result = processor.ProcessOnlinePayment(paymentInfo.CardName,
 paymentInfo.CardNumber,
 paymentInfo.Amount);
 return result.TransactionNumber;
 }
}

 TRADE SECRETS TO WRITE BETTER CODE // 58

Here each bit of logic is encapsulated in their own
methods.

If we needed to add more functionality to the online
credit processing, we can easily make that method
longer without making the other areas of code less
readable.

This was a very simple and contrived example. It
could even be extended further.

Processing logic could be split into dedicated
processor classes loaded by dependency injection,
based on the type of the payment.

Database save logic could be split out into its own
area to allow for consolidation of validation logic
(validation is missing from this example for brevity).

IN SUMMARY

Refactoring is an important part of software
development.

While it doesn’t make a noticeable change to the
software from an end user perspective, it helps to
reduce costs of future development.

Regular refactoring of your code will make your life,
as a developer, easier.

Your clients will also benefit by saving them time
and money in the long run.

You should do your best to find time for refactoring,
whenever possible.

Ideally it should be early in a development cycle.

Focus on refactoring code prone to change, and
which is currently difficult to maintain.

Ensure refactoring does not introduce new
functional issues or harm performance of the
system.

CHAPTER 11//
FINAL THOUGHTS

Managing code quality is a long term game.

 TRADE SECRETS TO WRITE BETTER CODE // 60

THIS BOOK HAS APPROACHED THE TOPIC
OF IMPROVING CODE QUALITY FROM
A NUMBER OF DIRECTIONS. WE HAVE
OUTLINED, AT A BROAD LEVEL, SOME OF
THE CHALLENGES OUR ORGANISATION HAS
FACED IN THE PAST AND HOW WE HAVE
WORKED IN RESPONSE. THE RECURRING
MESSAGE IS BEST PUT AS AN ANALYTICAL
ONE — EVERY TEAM AND PROJECT IS
DIFFERENT AND THERE ARE NO ONE-SIZE
FITS ALL SOLUTIONS.

We can make no guarantees that the techniques
that have worked for us will work in every team.

Indeed, that is almost the point: there are a plethora
of options.

Many of them address a singular issue.

The best way to improve code quality in any team is
to look at a list of the biggest quality problems and
to figure out how best to address those individual
problems.

We have some recurring elements within our
development process, for example our development
stack (slightly modified if required) works well for us.

It is designed for security and robustness, and is
something that is appropriate for every scenario we
have built our systems for.

We think that it’s a solid foundation we’re building
on, based on our situation.

Similarly, our process for code analysis benefits us
well.

We have rejigged our requirements elicitation
process and testing processes to work well with
our development team and to ensure maximum
communication.

In short, we have tuned our process to deal with the
problems we have historically faced. Any other team
will, of course, be facing different problems.

If a team spends significant time reworking things
that they’ve already developed, there may be a
communication issue at play.

If a team is constantly committing broken
interpreted code, introducing linting will help.

If development is inexplicably slow, it may be a
tooling, codebase complexity, or comprehensibility
issue.

Often the first steps toward improving code quality
will be relatively obvious and reactionary in this way
— a problem with an apparent solution.

As things progress, however, the opportunities for
improvement of the codebase’s quality may become
less apparent.

In these cases, it’s useful to collect and use metrics
to objectively determine what needs attention.

In a lot of cases, the results of reducing technical
debt and improving code quality will not be apparent
immediately.

The true benefit is not immediate. But slowly builds
up over time. Altering code for readability takes
time.

But the 5 minutes each engineer saves when looking
at that code in the future quickly begins to add
up. Changes that may have taken days in a poor
codebase can be done a couple of hours on a high
quality one.

So the other side of the message is one of
persistence.

Apart for some obvious low hanging fruit, improving
code quality is something that takes work and time
– do not be deterred if quality payoffs do not occur
immediately.

Managing code quality is a long-term game.

We hope that the content of this book has been
insightful and useful to readers.

It’s through these processes that we have refined
our own development technique, methodologies and
processes for maximum efficiency.

	Chapter 1 - Know what you want to achieve
	Chapter 2 - Pick the right tools for the job
	Chapter 3 - Decide on your style & stick to it
	Chapter 4 - Relentlessly push for simplicity
	Chapter 5 - Focus on code comprehensibility
	Chapter 6 - Techniques for improving code comprehensibility
	Chapter 7 - Test early, test often
	Chapter 8 - Automate code quality
	Chapter 9 - Code reviews
	Chapter 10 - Code refactoring
	Chapter 11 - Final thoughts

	Next 2:

